
Efficient Subgraph Matching using GPUs

Xiaojie Lin1, Rui Zhang1, Zeyi Wen1, Hongzhi Wang2, and Jianzhong Qi1

1 University of Melbourne, Victoria, Australia
xiaojiel1@student.unimelb.edu.au

{rui.zhang, zeyi.wen, jianzhong.qi}@unimelb.edu.au
2 Harbin Institute of Technology, Harbin, China

wangzh@hit.edu.cn

Abstract. The explosive growth of various social networks such as Face-
book, Twitter, and Instagram has brought in new needs for efficient graph
algorithms. As a basic graph operation, subgraph matching is the foun-
dation of many of these algorithms. Consequently, the efficiency of sub-
graph matching is very important and determines the speed of the whole
data mining process. The development of multi-core CPUs allows sub-
graph matching algorithms to process multiple data at a time. However,
the number of threads is still limited, which has become a bottleneck of
these CPU-based algorithms. A workaround is using clusters of powerful
servers, which normally incurs very expensive network transfer overhead.
Therefore, improving the efficiency and parallel abilities of a single com-
puter is a better idea. One of the most effective way to achieve this is
making use of GPUs. With the ability of executing thousands of threads
simultaneously, GPUs have a great potential to accelerate the subgraph
matching. In this paper, we leverage the power of GPUs and propose an
efficient subgraph matching algorithm. The experimental results show
that our algorithm outperforms the state-of-the-art algorithm by an or-
der of magnitude.

Keywords: subgraph matching · GPU · relation join

1 Introduction

Data in many different domains including social network, web, chemistry, bioin-
formatics etc. can be naturally modeled as graphs. These data graphs are usually
complicated and large. We need fast enough data mining methods to extract use-
ful information from them. Subgraph matching (subgraph isomorphism), which
is usually a time-consuming process, plays vital roles in many of these methods.
Improving the efficiency of subgraph matching is crucial in many applications.
Examples include using subgraph matching to 1) locate suspicious codes in the
call graphs of a program [7], 2) find protein structures that contain α-β-barrel
motif [2], [10], 3) identify a small subset of molecules for further analysis in drug
design [16] and 4) help social science researchers discover the relations between
a successful CEO and his/her friends [18].

Much work has been done to improve the efficiency of subgraph matching,
For example, the state-of-the-art STwig algorithm [14] achieves higher efficiency

by abandoning graph structure index and combining exploration and join mecha-
nism. However, as well as other algorithms, they all subject to the limited parallel
processing ability of CPUs. Although multi-core CPUs have been developed for
a long time, the number of concurrent threads is still limited, which is normally
up to 16 or 20. The limited parallel ability has become a bottleneck for these
CPU-based algorithms. By contrast, a high-end GPU has the ability of executing
several thousand or more threads simultaneously [13], which makes it suitable
for many applications involving processing a large amount of data. Compared
with CPUs, GPUs also have a very high memory bandwidth. To further improve
the efficiency of subgraph matching, making use of GPU is a good solution.

Our GPU-based algorithm can execute thousands of threads simultaneously
to process different pieces of data. We use sophisticated memory layout in global
memory to take advantage of caches and coalesced memory access. We also make
full use of shared memory and constant memory to achieve extra acceleration.

1.1 Contributions and Organization of the Paper

To summarise, we make the following contributions in this paper.

– We analyse the state-of-the-art algorithm and identify bottleneck.
– We propose an efficient GPU-based subgraph matching algorithm which

makes use of elaborate join order and fully pipeline mechanism.
– We conduct extensive experiments to study the performance.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 analyses the STwig algorithm and also briefly explains the CUDA
structure. Section 4 presents our GPU-based algorithm. Section 5 presents the
experimental results. Finally, Section 6 concludes this paper.

2 Related Work

2.1 Subgraph Matching

The simplest way to solve the problem of subgraph matching is brute-force
search, but the computation time is unacceptable even if the graph is small.
Ullmann and Julian proposed a backtracking algorithm [15] which can reduce
the size of the search space significantly. In the same spirit, Cordella et al. de-
veloped a pruning based algorithm [6]. This algorithm makes use of state space
representation (SSR) of the matching process and a set of feasibility pruning
rules. Also, a new way of organizing data is adopted to reduce the memory re-
quirements. This algorithm has a better time and spatial performance. However,
it is still too slow and can only handle graphs with several thousand nodes.

To deal with larger graphs, a lot of algorithms use indices to achieve better
performance. Systems like RDF-3X [12] and BitMat [1] create indices on distinct
edges to improve performance. SpiderMine [17] mines and indexes the top-K

largest frequent patterns from the graphs. R-Join [4] uses 2-hop reachability
labels [5] as its indices, and Distance-Join [18] uses a similar reachability index.

The problem of the algorithms using complex indices is obvious: the con-
struction time or memory space for the indices are usually prohibitive. This
disadvantage becomes much more significant when the graphs are very large.

The STwig algorithm [14] solves this problem by totally abandoning graph
structure indices. The algorithm uses only a very simple index for mapping
text labels to graph nodes, which has linear size and linear construction time.
To compensate for the lack of graph structure indices, the STwig algorithm
decomposes the query graph into two-level trees by a sophisticated algorithm
and adopts an exploration mechanism, which can reduce both the number of
two-way join operations and the size of joins’ parameters. The details of STwig
algorithm are discussed in Section 3.2.

To handle very large graphs, the STwig algorithm makes use of powerful
clusters. The efficiency of STwig algorithm on such platforms is satisfactory.
However, improving the efficiency on a single computer is still necessary. On
the one hand, it is always preferable to use a single computer to get work done
in time. On the other hand, less computers in a cluster are needed if a single
computer can process data faster.

2.2 Join Algorithms on GPU

He et al. proposed a series of GPU join algorithms [9] including NLJ, INLJ,
NINLJ and HJ. The speedup ratios for these algorithm range from 1.9X to
7.0X.

Kaldewey et al. proposed an algorithm [11] making use of zero copy mech-
anism, which allow the join operation to be processed “on the fly” as the GPU
reads the input tables from CPU memory directly at PCI-E speed.

However, the algorithms mentioned above do not address the problem of
large intermediate data produced in a multi-way join.

3 Preliminaries

3.1 Subgraph Matching

In this paper, we consider subgraph matching on a labeled graph. Let G =
(V,E, T) be a graph, where V is the vertex set, E is the edge set, and T : V → Σ∗

is a labeling function assigning a label to each vertex of G. Giving a labeled query
graph q = (Vq, Eq, Tq), subgraph matching will find all occurrences of q in G.

Take the query graph and data graph shown in Fig 1(a)(c) as an example,
the matching results are (A1, B1, C1, D1, E1).

3.2 The STwig Algorithm

STwig algorithm [14] can be divided into steps as described below.

(a) Query graph (b) Decomposition

...

(c) Data graph

Fig. 1: A data graph and a query graph

Query Graph Decomposition is the first step. a query graph will be decom-
posed into a set of basic query units called STwigs. A STwig is a two-level tree,
whose structure is very simple so that matching it in the data graph is very easy.

An example of the decomposition is shown in Fig 1(a)(b). The decomposition
algorithm tries to minimize the number of STwigs and ensure that we can find
a STwig order ⟨o1, o2, · · · , on⟩ which satisfies the following statement: ∀i >= 2,
∃j < i such that the root node of STwig oi is the same node as a leaf of STwig
oj . ⟨q1, q2, q3⟩ is such an order in the example of Fig 1. The order can be used
in the step of matching STwigs.

Matching STwigs in the data graph is simple. The system constructs a label
index at the beginning so that nodes with a specified label can be retrieved
directly. The algorithm of matching the first STwig o1 is shown in Algorithm 1.

Algorithm 1: Match the First STwig
input : Data graph G, STwig o1 = (r1, L1) where r1 is the root node and L1 is

the leave label set
output: Result set R
Fill the set S1 with all nodes with r1’s label;
for each n in S1 do

for each li in L1 do
Tli ← {m|m ∈ n.neighbors and m.label=li};

R = R ∪ {{n} × Tl1 × Tl2 × · · · × Tl|L1|};

The matching algorithm for other STwigs is slightly different because some
pruning mechanism can be used. Let us consider Fig 1. The matching order is
⟨q1, q2, q3⟩. The result sets for q1 and q2 are R1 = {(A1, B1, C1), (A2, B2, C1)}
and R2 = {(B1, C1, D1)} respectively. When q3 is being matched, the candidate
set for its root node is not {D1, D2, · · · , Dm}. R2 ensures that only node D1 in the
data graph is possible to match node D in the query graph, so the candidate set
for q3 is {D1} and R3 = {(D1, E1)}. This pruning strategy can reduce memory
usage and the workload of the following join operation significantly.

Joining STwig Results is the final step. For the example above, the final
result set is R1 1 R2 1 R3 = {(A1, B1, C1, D1, E1)}

3.3 General Purpose Computation on GPU

A CPU invokes a GPU by calling the kernel function, then the multiprocessors
of the GPU will execute the kernel function simultaneously.

GPU threads are organized in a two-level hierarchy. The lower level is block,
where multiple threads are organized in 1D, 2D or 3D ways. Each GPU thread
has it own ID. For example, a thread ID comprises a row number and a column
number in a 2D block. The higher level is grid, which contains multiple blocks.

GPUs also have a memory hierarchy. A single thread has a private memory
space provided by registers and local memory. Registers is very fast but the
amount is limited and they cannot be used to store an array indexed with non-
constant quantities. Local memory resides in big but slow device memory and it
does not have such restriction. Threads in the same block share shared memory,
which is on-chip, small and very fast. All threads on a GPU can access to global
memory, constant memory and texture memory, all of which reside in device
memory. Constant memory and texture memory have dedicated caches to speed
up the access. GPUs with compute capability higher than 2.0 have L1 and L2
caches for global memory, which is similar to CPUs.

4 Our Proposed GPU-based Algorithm

Not all of the 3 steps of the original STwig algorithm are perform on the GPU.
The decomposition step consumes only a very small amount of time, so there

is no need to perform it on the GPU. The step of matching STwig is also per-
formed on the CPU because: 1) The computation time is not as long as that of
the join step normally; 2) The data graph may occupy too many GPU memory;
3) We can pipeline the CPU steps and the GPU steps to achieve extra speedup.

Joining STwig results is the step on which we focus. In the worst case, each
single 2-way join can produce a result set whose size is the product of input
relation sizes, so both the computation time and memory usage are problems.

We propose a GPU-based join algorithm in the following subsections to solve
these problems. The algorithm makes use of hash table to improve the efficiency.
Although the random memory access pattern of hash table will negatively affect
GPU memory bandwidth, the constant search time still makes it a good choice.

4.1 Choosing a Join Tree

We denote the result sets of all STwigs by R1, R2, · · · , Rn. A multi-way join can
be represented by a join tree. Each leaf of the join tree represents the result
set of a STwig. Each internal node represents a 2-way join. The left child of an
internal node is the build relation, which means a search data structure will be
built for it. The right child is the probe relation, whose tuples are used to matche
with those of the build relation.

Two different join trees are shown in Fig 2 (⟨p1, p2, · · · , pn⟩ is a permutation
of {1, 2, · · · , n}). GPU memory is limited and cannot be enlarged freely, so the
major consideration of choosing join tree is memory usage.

(a) Left-deep join tree (b) Right-deep join tree

Fig. 2: Join tree

Let us consider the left-deep join tree. To save GPU memory, we only load
Rp1 and build the corresponding hash table H1 in the GPU at first. Then GPU
threads read tuples of Rp2 from CPU memory directly, conduct the first 2-way
join and store results in the GPU. After the join, H1 can be released and hash
table H2 will be built for the result set of Rp1 1 Rp2 in the GPU. The second
2-way join (Rp1 1 Rp2) 1 Rp3 can then begin. Consequently, only one hash
table and one intermediate result buffer reside in GPU. However, they may still
be too large. In the worst case, |Rp1 1 Rp2 | may be as large as |Rp1 × Rp2 |.
Workarounds for the memory problem like using block-based mechanism exists.
However, they can slow down the process significantly. Bushy join trees (trees
that are neither left-deep or right-deep) have the same problem.

The right-deep join tree is a better idea because a fully pipeline mechanism
can be used. At the beginning, hash tables H2,H3, · · · ,Hn will be constructed in
the GPU for Rp2 , Rp3 , · · · , Rpn respectively. Because of the pruning mechanism
used in matching STwigs, R2, R3, · · · , Rn are much smaller than R1. In many
cases, |

∑n
i=2 Ri| is even smaller than |Rn|, so we can let R1 to be Rp1 to save a

large amount of memory. Besides, we use a fully pipeline mechanism to minimize
memory space for the intermediate data, which is described in Section 4.3.

The Order of Leaves Further improvement can be achieved by optimizing the
order of leaves, i.e. optimizing the permutation of ⟨p1, p2, · · · , pn⟩. Better order
can result in less intermediate results which means less join time. To choose the
optimal order, we can predict the size of intermediate results [8].

4.2 Hash Tables on GPU

Definitions of Operators The hash table operators defined here will be used
to explain our join algorithm later. Hi.match(x) returns the iterator point-
ing to the first record that match x. iterator.record() returns the record and
iterator.next() returns the iterator pointing to the next record that match x.

Implementation Details We implement the hash table by chaining mech-
anism, which can be constructed in parallel easily. Data is stored together in
two arrays to avoid memory overheads. The first array is pool. Each record of
Rpi(1 < i ≤ n) occupies li +1 successive entities of pool, where li is the size of a
Rpi ’s record. The extra entity is used to store the index of next record with the

same hash value. Another array is head. Each entity of head stores the index of
the first record in the chain with corresponding hash value.

In the phase of constructing hash tables, each thread will first calculate the
hash value of a record storing in pool. Then it will link the record at the head
of the chain by two assignment atomically: 1) extra entity← head[hash value] 2)
head[hash value]← current record index.

We use the least ⌊log |Rpi |⌋ significant bits of the sum of a record’s entities
as the hash value, so the size of array head is 2⌊log |Rpi

|⌋, and the size of array
pool is |Rpi |(li + 1). The total size of a hash table is 2⌊log |Rpi

|⌋ + |Rpi |(li + 1).
Apparently, 2⌊log |Rpi

|⌋ ≤ |Rpi
|, so

hash table size
data size

=
2⌊log |Rpi

|⌋ + |Rpi |(li + 1)

li|Rpi |
≤ 1 +

2

li

Because li ≥ 2, a hash table occupies at most 2 times memory.

4.3 Joining STwig Results

Our pipeline joining algorithm (see Algorithm 2) works like a depth-first search
and only a very small and fixed amount of intermediate data need to be stored.
The explanation of the algorithm is separated in the following subsections.

Algorithm 2: Join algorithm for each thread
Input: Probe relation Rp1 and hash tables H2, H3, · · · , Hn

1 begin
// pos indicates this thread is processing subjoin 1pos

2 pos← 1;
3 itArray[1]← none;
4 while true do
5 while itArray[pos] = none and pos ̸= 1 do
6 pos← pos− 1;

7 while itArray[1] = none do
8 i← GetNewRecordsOrQuit();
9 set imResult based on Rp1 [i];

10 itArray[1]← H2.match(imResult);

11 set imResult based on pos and itArray[pos].record();
12 itArray[pos]← itArray[pos].next();
13 if pos = n− 1 then
14 output imResult as a final result;
15 else
16 itArray[pos+ 1]← Hpos+2.match(imResult);
17 pos← pos+ 1;

Definitions of Variables and Functions Each thread of the GPU has two
arrays. One is imResult[1, 2, · · · , qn], which stores the intermediate result. Each
entity corresponds to one query graph node, so a final joining result is produced
when all entities are set. Another is itArray[1, 2, · · · , n − 1]. When a thread is
processing subjoin 1i (see the join tree in Fig 2(b)), it stores an iterator of
Hi+1 in itArray[i]. Both imResult and itArray are frequently accessed and
small enough, so we put them in shared memory. Each thread has a variable pos
which is used to indicate the subjoin being processed. For example, the thread
will be processing 11 if pos = 1.

The function GetNewRecordsOrQuit() is used to retrieve the first unhandled
record of Rp1 . If there is no unhandled record, this function will terminate the
thread.

A DFS-like Procedure The strategy of our algorithm is to “consume” the
intermediate results as soon as possible. In the whole process of the join, a GPU
thread will move forward to process next subjoin whenever possible and only
moves backward when the current subjoin fails. The manner is similar to that
of a depth-first search algorithm.

An Example We use an example to illustrate how our algorithm works.
Let us consider the data graph and query in Fig 1 again. The result sets

of STwigs and the final result set are R1 = {(A1, B1, C1), (A2, B2, C1)}, R2 =
{(B1, C1, D1)}, R3 = {(D1, E1)} and R1 1 R2 1 R3 = {(A1, B1, C1, D1, E1)}
respectively.

In this example, the probe relation is R1 and we first join R2 with R1, so
11= R2 1 R1 and 12= R3 1 (R2 1 R1). We assume imResult[1] corresponds
to node A of query graph; imResult[2] corresponds to node B . . .

At the beginning, the GPU constructs hash tables H2 and H3 for R2 and
R3 respectively. Then the join process starts. To simplify the explanation, we
assume there is only one thread.

When Algorithm 2 starts, the thread will first initialize pos to 1 and itArray[1]
to none. Then it starts the first round of the outermost block of while.

In line 8, it calls GetNewRecordsOrQuit() to get the index of the first
unhandled record of R1. Then imResult is set to (A1, B1, C1,−,−) (line 9).
The match operator of H2 checks the second and third entities of imResult
and returns an iterator pointing to record (B1, C1, D1) of R2 to set itArray[1]
(line 10). Based on the value of itArray[1].record(), imResult is further up-
dated to (A1, B1, C1, D1,−) (line 11). itArray[1] is updated again to point to
next record in line 12. It is actually updated to none because there is no other
record in R2 whose first two entities are B1 and C1. Preparing for next round,
itArray[2] is set to an iterator pointing to the only matching record of R3,
(D1, E1), in line 16, and pos is increased to 2 in line 17.

In the second round, imResult[5] will be set to E1 in line 11. At this point,
all entities of imResult are set properly, so the thread will output the final result
(A1, B1, C1, D1, E1) contained in imResult in line 14.

At the third round, pos will be decreased to 1 again in the while block begin-
ning in line 5. Then in the while block beginning in line 7, it calls GetNewRecordsOrQuit()
to get a new record of R1, i.e., (A2, B2, C1), to set imResult. However, no record
of R2 match imResult this time and itArray[1] is set to none (line 10). The
thread calls GetNewRecordsOrQuit() again and terminates itself because no
record is unhandled.

4.4 Storage

Storage of Rp1 The result set Rp1 can be stored in either CPU or GPU and
both solutions require the memory access to be coalesced, so we store Rp1 in a
well-padding 2D array. Each record of Rp1 will be stored in one column.

The Shared Memory imResult and itArray cannot be stored in registers
because they are not indexed with constant quantities, so we store them in
shared memory as mentioned above. To avoid serializing access due to bank
conflicts, 32 imResults of all threads in the same warp are stored together in a
2D array. Each imResult occupies one column so that each thread can always
access imResult via its own bank. itArray is stored in the same way.

5 Experimental Study

All the experiments were conducted on a computer with 8GB RAM, a 3.30GHz
Intel(R) Xeon(R) E5-2643 CPU and a Tesla C2075 GPU. Tesla C2075 has 5GB
global memory and its compute capability is 2.0.

We use synthetic data in the following experiments to study how the proper-
ties of data graphs and query graphs affect our speedup ratio. The data graphs
in this section are generated by using R-MAT [3] model. The graphs are undi-
rected and the parameters of R-MAT model are a = 0.4, b = c = d = 0.2. A
query graph with N nodes is generated by adding 2N edges randomly.

5.1 Computation Time of Each Steps

To analyze the efficiency of each step, we conducted an experiment and recorded
the computation time. The data graph we used in this experiment has 16K nodes
and 16 labels. The average degree is 32. We generated 100 query graphs whose
numbers of nodes range from 5 to 10. The results are shown in Fig 3a.

The total time is the sum of “(Copy &) Hash” time, join time and other
time consumed by common operations which are the same both CPU-based and
GPU-based algorithms. We can see that the join time normally dominates the
total time, so our approach of optimizing the join operation achieves an overall
speedup of an order of magnitude. Actually, if we only consider the join time,
the speedup ratio reaches to 26.0. On the other hand, the GPU takes more time
to finish the step of “(Copy &) Hash”, but this time is relatively small and will

 1

 10

 100

 1000

 10000

 100000

Total (Copy &) Hash Join

R
un

 ti
m

e(
m

s)
CPU
GPU

(a) Computation time of each step

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 14 16 18 20

 5

 10

 15

 20

 25

R
un

 ti
m

e(
m

s)

S
pe

ed
up

 r
at

io

Label count

CPU
GPU

Speedup

(b) Label count effect

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 28 32 36 40

 5

 10

 15

 20

 25

R
un

 ti
m

e(
m

s)

S
pe

ed
up

 r
at

io

Averager degree

CPU
GPU

Speedup

(c) Average degree effect

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5 6 7 8 9 10

S
pe

ed
up

 r
at

io

Query size(# of nodes)

(d) Query size effect

Fig. 3: Experiment Results

not affect the overall speedup ratio. The major reasons for this phenomenon are
1) the GPU has to copy data from CPU memory before building hash tables,
which can consume considerable time, 2) our GPU algorithm uses lots of atomic
operations in the step of building hash tables and 3) the uncoalesced memory
access pattern of this step can slow down GPU algorithm.

5.2 The Effect of Data Graph Size

To verify the performance of GPU algorithm with different size of data graph,
we conducted some experiments in which only the numbers of nodes of data
graphs are changed. The numbers of labels and the average degrees for all data
graphs are 16 and 32 respectively. The numbers of data graph nodes are 16K,
32K, 64K and 128K. Our GPU algorithm outperforms CPU in all cases, and the
speedup ratios range from 7.8 to 16.7.

5.3 The Effect of Label Count

In this experiment, we study the effect of the number of labels. We used several
data graphs with the same node counts (16K) and average degrees (32). Only
the label counts are different.

As shown in Fig 3b, the run times of both CPU and GPU decrease as the
label count increases. The reason is higher label count normally results in fewer
number of nodes in a data graph that match the roots of STwigs. Consequently,
the sizes of the relations to be joined are smaller and the join time decreases
rapidly. As the join time decreases, the workload of GPU decreases and the
speedup ratio also decreases.

5.4 The Effect of Average Degree

The effect of the average degree is similar to that of the label count. We generated
four data graphs with different average degrees. The same set of query graphs
are used for all the data graphs. As the average degree grows, the run time
increases because the result sets of STwigs becomes larger. Also, the speedup
ratio increases because of the rise of workload.

5.5 The Effect of Query Graph Size

Besides the properties of data graphs, we also observed a relation between the
speedup ratio and the query graph size, i.e., the number of nodes in a query
graph. The relation is shown in Fig 3d. We can see that the speedup ratio in-
creases as the number of query graph nodes increases from 5 to 9. However,
the speedup ratio decreases when the sizes of query graphs reach 10. This phe-
nomenon relates to the workload and our implementation.

When the query graph is small, smaller number of STwigs and fewer edges
in each STwig results in light workload. In such cases, we cannot make full
use of the powerful computation abilities of the GPU. When the query graphs
are larger, the workload increases and each GPU thread can keep itself busy.
Consequently, the average speedup ratio for query graphs with 9 nodes reaches
15.66. However, if a query graph is too large, the speedup ratio may decline
because imResult and itArray occupied too much shared memory and thus the
number of the concurrent threads will decline. In our experiment, concurrent
thread counts can drop from 21504 to 10752.

6 Conclusions

Subgraph matching involves a large amount of data to be processed. Conse-
quently, the computation time is very long. To alleviate this problem, parallel
technology is widely used. However, most of the approaches only try to exploit
CPUs’ parallel abilities, which is very limited. By contrast, our algorithm makes
use of GPUs. A high-end GPU has the ability of executing thousands of threads
simultaneously. This ability allows our algorithm to outperform the state-of-
the-art algorithm by an order of magnitude based on the experimental results.
Additionally, we observe that our approach can perform even better in a heavy
workload situation.

References

1. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix bit loaded: a scalable
lightweight join query processor for rdf data. In: Proceedings of the 19th inter-
national conference on World wide web. pp. 41–50. ACM (2010)

2. Branden, C., Tooze, J., et al.: Introduction to protein structure, vol. 2. Garland
New York (1991)

3. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model for graph
mining. Computer Science Department p. 541 (2004)

4. Cheng, J., Yu, J.X., Ding, B., Yu, P.S., Wang, H.: Fast graph pattern matching.
In: Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on.
pp. 913–922. IEEE (2008)

5. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing 32(5), 1338–1355 (2003)

6. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 26(10), 1367–1372 (2004)

7. Eichinger, F., Böhm, K., Huber, M.: Mining edge-weighted call graphs to localise
software bugs. In: Machine Learning and Knowledge Discovery in Databases, pp.
333–348. Springer (2008)

8. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database system implementation,
vol. 654. Prentice Hall Upper Saddle River, NJ: (2000)

9. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Rela-
tional joins on graphics processors. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. pp. 511–524. ACM (2008)

10. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data. pp. 405–418. ACM (2008)

11. Kaldewey, T., Lohman, G., Mueller, R., Volk, P.: Gpu join processing revisited. In:
Proceedings of the Eighth International Workshop on Data Management on New
Hardware. pp. 55–62. ACM (2012)

12. Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data.
The VLDB Journal 19(1), 91–113 (2010)

13. NVIDIA: CUDA C best practices guide (2013)
14. Sun, Z., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node

graphs. Proceedings of the VLDB . . . pp. 788–799 (2012)
15. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM

(JACM) 23(1), 31–42 (1976)
16. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In:

Proceedings of the 2005 ACM SIGMOD international conference on Management
of data. pp. 766–777. ACM (2005)

17. Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., Yu, P.: Mining top-k large structural
patterns in a massive network. Proceedings of the VLDB Endowment 4(11) (2011)

18. Zou, L., Chen, L., Özsu, M.T.: Distance-join: Pattern match query in a large graph
database. Proceedings of the VLDB Endowment 2(1), 886–897 (2009)

