
Finding All Nearest Neighbors with a Single Graph
Traversal

Yixin Xu, Jianzhong Qi, Renata Borovica-Gajic, and Lars Kulik

School of Computing and Information Systems, The University of Melbourne
Melbourne, Australia

yixinx3@student.unimelb.edu.au
{jianzhong.qi,renata.borovica,lkulik}@unimelb.edu.au

Abstract. Finding the nearest neighbor is a key operation in data analysis and
mining. An important variant of nearest neighbor query is the all nearest neighbor
(ANN) query, which reports all nearest neighbors for a given set of query objects.
Existing studies on ANN queries have focused on Euclidean space. Given the
widespread occurrence of spatial networks in urban environments, we study the
ANN query in spatial network settings. An example of an ANN query on spatial
networks is finding the nearest car parks for all cars currently on the road. We
propose VIVET, an index-based algorithm to efficiently process ANN queries.
VIVET performs a single traversal on a spatial network to precompute the nearest
data object for every vertex in the network, which enables us to answer an ANN
query through a simple lookup on the precomputed nearest neighbors. We analyze
the cost of the proposed algorithm both theoretically and empirically. Our results
show that the algorithm is highly efficient and scalable. It outperforms adapted
state-of-the-art nearest neighbor algorithms in both precomputation and query
processing costs by more than one order of magnitude.

1 Introduction

Finding the nearest neighbor is an important query in spatial databases. Its variation
includes reverse nearest neighbor search [1], continuous nearest neighbor search [2], all
nearest neighbor search [3] and so forth. An important variant of the nearest neighbor
query, the all nearest neighbor query, returns the nearest neighbor of each query object
over a spatial network. Despite its importance, this query has not been addressed in the
research literature on spatial networks.

ANN queries have many applications. We briefly discuss two of them: (i) rideshar-
ing and (ii) carparks. For ridesharing, the average number of daily trips using Uber
reached 5.5 million in 2016 [5], which shows the importance of highly scalable and
efficient ANN algorithms to match cars with riders instantly. (ii) According to a study
on parking spaces of 27 districts in the United States [4], the average oversupply ratio
of parking spaces to cars requiring parking is 45% among districts that have identified
parking shortages. The large oversupply ratio implies that building more parking spaces
is not an effective solution to the perceived lack of parking spaces. Instead, this study
shows that there is an increasing need for real-time parking management, which is able

to quickly report the locations of the nearest parking spaces for all drivers. This real-
time parking management requires finding nearest neighbors (carparks) for all drivers
in a road network. Both applications are examples of ANN queries in spatial networks.
Figure 1 shows an example of an ANN query. Given two data objects o1, o2 and four
query objects q1, q2, q3, q4, an ANN query is to compute the nearest data object for
each query object, e.g., o1 for q1 and q2, and o2 for q3 and q4.

Existing studies on ANN mainly focus on the Euclidean space [3, 5–10], where
the distance between two points is determined by their Euclidean distance. In the real
world, movements of objects are usually restricted by the underlying road network.
The traveling cost between two points is not only determined by their relative positions
but also affected by the route between them. Take v7 and v13 in Fig. 1 as an example.
The travel distance between them is much larger than their Euclidean distance because
the route must make a long detour to avoid the lake. In spatial networks, the distance
between two points is measured by the length of their shortest path. Data structures
and heuristics used by ANN algorithms in the Euclidean space, e.g., R-tree [11] and
grid-partitioning [6], are not applicable to spatial networks due to the different distance
concepts. Our study fills the need for an efficient ANN algorithm in spatial networks.
To the best of our knowledge, this is the first study on ANN queries in spatial networks.

o1 o2

q1

q3

q2

q4

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

11

4

3

2

4

1

2

4

5
3

2

412

6

lake

Fig. 1: An example of all nearest neighbor query.

A straightforward solution to find ANNs in spatial networks is to apply a state-of-
the-art spatial network nearest neighbor (NN) algorithm for each query object individ-
ually. However, this solution is inefficient for large numbers of query objects. Besides,
it does not scale to large networks due to high memory cost.

Applying NN algorithms straightforwardly is inefficient due to the overlap of the
search regions of some query objects. For example, in Fig. 1, both the search regions
of q3 and q4 cover the two edges between v10 and v11 and between v9 and v10, as these
two edges are both on the shortest paths to their nearest neighbor the nearest neighbor
of q3 and q4 (i.e., o2). When the number of query objects is large, a large part of the
network may be visited multiple times, thereby severely impacting query performance.
Thus, an efficient ANN algorithm needs a careful design to avoid unnecessary visits.

The reason that the straightforward solution is not scalable is due to the index struc-
tures used by spatial network NN algorithms. Most of the recent spatial network NN
algorithms improve their query performance by building indices during a precomputa-
tion phase. However, these indices are memory-intensive and thus do not scale to large
networks. Table 1 depicts the average memory consumption of two state-of-the-art spa-
tial network NN algorithms, G-tree [12] and IER-PHL [13], over five real-world road
networks. The two algorithms consume rapidly increasing memory with the growing

network size, which renders them inapplicable to large networks. To illustrate, IER-
PHL requires over 64 GB memory to index networks with roughly 14 million vertices.

Table 1: Memory consumption of G-tree, IER-PHL, and VIVET over five road networks.

Road network number of vertices
Memory consumption

G-tree IER-PHL VIVET
Northwest US 1 million 88.4 MB 845.1 MB 9.2 MB
East US 3.6 million 339.8 MB 6.4 GB 27.5 MB
Western US 6.3 million 543.3 MB 10.4 GB 47.8 MB
Central US 14.1 million 1.5 GB >64 GB 107.4 MB
Full US 23.9 million 2.4 GB >64 GB 182.7 MB

We propose VIVET (Virtual vertex traversal), a spatial network ANN algorithm
that overcomes the above limitations. In the precomputation phase, VIVET runs Dijk-
stra’s algorithm starting with a virtual vertex. The virtual vertex is created by connecting
it to every data object with an edge of weight zero (as shown in Fig. 2). After the traver-
sal, the shortest path from the virtual vertex to each vertex in the network is obtained.
For each vertex vi, we observe that there is always one data object oj on the shortest
path from the virtual vertex to vi, and oj is the nearest neighbor of vi. We store the
nearest neighbors of all vertices in an array N . For query processing, VIVET reports
the nearest neighbor of every query object by a simple lookup to N .

VIVET significantly outperforms solutions adapted from state-of-the-art nearest
neighbor algorithms described above in terms of precomputation and query cost. The
precomputation of VIVET is efficient and easy to implement compared with other near-
est neighbor indices because it only requires a single traversal over the network. Fur-
thermore, the memory consumption of the VIVET index (the array N) is linear to the
number of vertices in the network, which makes it scalable to large networks. Taking
Table 1 as an example, the memory consumption of VIVET is more than an order of
magnitude lower compared with the index of G-tree and two orders of magnitude lower
compared with the index of IER-PHL. In query processing, VIVET refers to the array
N directly to report the query results and thus outperforms the state-of-the-art NN al-
gorithms by almost two orders of magnitude. For example, VIVET needs less than 0.02
seconds to answer 500,000 query objects while existing NN algorithms require more
than 6 seconds under the same setting.

To summarize, our contributions are as follows:
– To the best of our knowledge, this is the first study on all nearest neighbor queries

in spatial networks.
– We propose a simple and efficient algorithm called VIVET for ANN queries in

spatial networks. VIVET is applicable to both undirected and directed networks.
– Our theoretical analysis proves the advantage of VIVET. The precomputation of

VIVET requires O((|E|+ |V |+ n) log |V |) time and O(|V |) space, where n rep-
resents the number of data objects and |E|, |V | represent the number of edges and
vertices, respectively. The overall query complexity is linear to the number of query
objects m, i.e., O(m).

– We conduct experiments on both real-world and synthetic data, showing that VIVET
outperforms the state-of-the-art algorithms by one to two orders of magnitude in
terms of query times and precomputation costs.

2 Preliminaries

We start with a few basic concepts, based on which we define the all nearest neighbor
query in spatial networks.

We consider a set of n data objectsO = {o1, o2, ..., on} and a set of m query objects
Q = {q1, q2, .., qm}. Both the data objects and the query objects are represented by
points on a spatial network.

The spatial network is modeled by a graph G = 〈V,E〉, where V is a set of ver-
tices and E is a set of edges. We consider both directed and undirected graphs. For ease
of presentation, we assume an undirected graph by default, and will discuss how our
techniques and algorithms can be adapted to directed graphs in Section 3.3. An edge
ei,j ∈ E connects two vertices vi and vj in V . Such two vertices are called adjacent
vertices. Every edge ei,j is associated with a weight, denoted by w(ei,j), which repre-
sents the cost of traveling between vi and vj . A path between two vertices vi and vj
is an ordered list of edges between the two vertices, denoted by Pi,j . We use |Pi,j | to
denote the number of edges in the path, and l(Pi,j) to denote the length of the path,
which is the sum of the weights of the edges in the path. The shortest path between vi
and vj is the path between them with the smallest length. This smallest length is called
the shortest path distance between vi and vj , denoted by dn(vi, vj). We further use
de(vi, vj) to denote the Euclidean distance between vi and vj .

For simplicity, we assume that the data objects and the query objects are located at
the graph vertices. This assumption can be easily met by adding vertices that represent
the data objects or query objects to the graph.

Nearest neighbor query in a spatial network. Given a query object q and a set of
data objects O in a spatial network G, a nearest neighbor query finds the nearest data
object oi ∈ O with the smallest shortest path distance to q, denoted by NN(q):

NN(q) = {oi ∈ O|∀oj ∈ O : dn(oi, q) ≤ dn(oj , q)}

All nearest neighbor query in a spatial network. Given a set of query objectsQ and
a set of data objects O in a spatial network G, an all nearest neighbor query finds the
nearest data object oj ∈ O with the smallest shortest path distance to every query object
qi ∈ Q. The query answer is a set of tuples of a query object and its nearest data object,
denoted by ANN(Q,O). Formally,

ANN(Q,O) = {〈qi, oj〉|qi ∈ Q, oj ∈ O, oj = NN(qi)}

In Fig. 1, ANN(Q,O) = {〈q1, o1〉 〈q2, o1〉, 〈q3, o2〉, 〈q4, o2〉}.

3 VIVET

In this section, we present our VIVET algorithm for ANN queries in spatial networks.
The VIVET algorithm precomputes and stores the nearest data object of every vertex in

the network. When an ANN query is issued, we simply lookup for the vertices where
the query objects lie on and return the corresponding nearest data object. Next, we detail
the precomputation process of VIVET, which computes the nearest neighbors for all the
vertices in a spatial network with a single traversal over the network.

3.1 Precomputation

To compute the nearest neighbors for all the vertices, a straightforward method is to
run a graph shortest path search algorithm such as Dijkstra’s algorithm [14] starting
from every vertex in the network. However, this algorithm may traverse the network
too many times and access the same vertices and edges repetitively.

To avoid such repetitive computation and overlapping network traversals, we pro-
pose to traverse the network starting from a virtual vertex which connects to all data
objects. The traversal will go through every vertex in the network. When the traversal
reaches a vertex, the corresponding path reaching the vertex must pass a data object and
this data object will be recorded as the nearest neighbor of the vertex.

We first augment the graph G with a virtual vertex v∗ and connect it to every data ob-
ject oi ∈ O with a directed edge−→e∗,i of weight 0. As we assume that the data objects are
all on the vertices, this process effectively connects the virtual vertex to every vertex vi
in V on which a data object lies. We denote the resulting graph as G∗, G∗ = 〈V ∗, E∗〉,
where V ∗ = V ∪ {v∗} and E∗ = E ∪ {−→e∗,i| −→e∗,i connects v∗ to oi ∈ O}.

v∗(virtual vertex)

0 0

o1
o2

q1
q2

11

4

3

2
4

1

2

4

5
3

2

412

7

3

6

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

Fig. 2: An example of VIVET.

We call G∗ the augmented graph. Figure 2 illustrates such a graph. The virtual
vertex v∗ is connected to vertices v4, v9 where there are data objects o1 and o2. Note
that even though the original graph G is undirected, the augmented graph G∗ contains
directed edges that only allows traveling from v∗ to the vertices (data objects) in V . The
directed edges here are used to ensure that the graph traversal starting from v∗ will not
go back to v∗ (note the zero weight for the edges connecting v∗ to the data objects), so
as to guarantee the validity of our precomputation algorithm.

Once the augmented graph G∗ is computed, we run a single-source graph shortest
path algorithm (e.g., Dijkstra’s algorithm) starting from the virtual vertex v∗ to find the
shortest path to every vertex in V . We record the data object that a path goes through.

When the traversal reaches a vertex vi, the data object on the path to vi is recorded. We
show that there is always one and only one data object on the shortest path from v∗ to
vi and this data object is the nearest data object of vi with the following two lemmas.

Lemma 1. Given a connected graph G = 〈V,E〉 and an augmented graph G∗ =
〈V ∗, E∗〉 created from G, for every vertex vi ∈ V , there must be one and only one
data object on the shortest path from v∗ to vi.

Proof. First, we prove that there must be at least one data object on the shortest path to
vi. Since G is connected, there must be a path that connects v∗ to vi by the design of the
augmented graph G∗. Since v∗ is only connected to the data objects, any path including
the shortest path from v∗ to vi must go through at least one data object.

Next, we prove by contradiction that there is at most one data object on the shortest
path to vi. Let 〈P = v∗, oj , ..., vi〉 be the shortest path from v∗ to vi. The second vertex
on by the path must be a vertex on which a data object oj lies by design of G∗. Suppose
that there is another data objects ok in the path, i.e., P = 〈v∗, oj , ...ok, ..., vi〉. Then, the
distance between oj and vi must be larger than that between ok and vi, i.e., dn(oj , vi) >
dn(ok, vi). Since there is an edge that connects from v∗ to every data object, there must
be another path P ′ = 〈v∗, ok, ..., vi〉. The edge between v∗ to every data object has a
zero weight. Thus, the path length l(P) = dn(oj , vi) > dn(ok, vi) = l(P ′), which
contradicts that P is the shortest path between v∗ and vi. ut

For example, in Fig 2, there is only one data object o2 on the shortest path between
v∗ and v11, which goes through v∗, o2, v10, v11.

Lemma 2. Given a connected graph G = 〈V,E〉 and an augmented graph G∗ =
〈V ∗, E∗〉 created from G, the data object on the shortest path from v∗ to every vertex
vi ∈ V is the nearest data object of vi.

Proof. The proof is similar to the second half of Lemma 1’s proof and omitted. ut

Lemmas 1 and 2 guarantee the correctness of using a single-source shortest path
algorithm to compute the nearest neighbor for every vertex. Any single-source graph
shortest path algorithms can be used. We use Dijkstra’s algorithm for its simplicity and
efficiency [14].

Once the nearest neighbors of the vertices are computed, we store them as an array
of vertex-NN pairs (together with the shortest path distance) for fast retrieval at query
processing. We call this array the NN array. Table 2 illustrates the NN array built for
the example shown in Fig. 2.

Table 2: VIVET index of Fig. 2.
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

NN o1 o1 o1 o1 o1 o1 o2 o1 o2 o2 o2 o2 o2
distance 1 2 5 0 2 6 6 8 0 5 8 10 9

Algorithm 1 summarizes the precomputation procedure of VIVET. The algorithm
starts with creating the augmented graph G∗ based on the spatial network G (Lines 1

Algorithm 1: Precomputation
Input : G = 〈V,E〉, object set O
Output: NN array indexing the nearest object of every vertex vi ∈ V .

1 create a virtual vertex v∗;
2 E∗ = E, V ∗ = V ∪ {v∗};
3 for oi ∈ O do
4 create a virtual edge −−−−−→e∗,oi.vid; // oi.vid is the vertex ID of oi
5 w(−−−−−→e∗,oi.vid) = 0;
6 E∗ = E∗ ∪ {−−−−−→e∗,oi.vid};
7 initialize an array N with size |V |;
8 for oi ∈ O do
9 N [oi.vid].nndistance = 0;

10 N [oi.vid].nnid = oi.oid; // oi.oid is the object ID of oi

11 initialize a priority queue PQ;
12 PQ.insert (v∗);
13 while PQ 6= ∅ do
14 vi = the first element in PQ;
15 if vi has not been visited before then
16 for each adjacent vertex vj of vi that have not been visited before do
17 if N [j].nndistance > N [j].nndistance+ w(ei,j) then
18 N [j].nndistance = N [j].nndistance+ w(ei,j);
19 N [j].nnid = N [i].nnid;
20 PQ.insert(vj);

21 mark vi as visited;

22 return N ;

to 6). Then, it initializes an array N of size |V | to store the NN pairs (Line 7). The data
objects located at vertices are the nearest data objects of those vertices, which yield a
nearest neighbor distance of 0 (Lines 8 to 10). Next, the graph traversal starts. We use
a priority queue PQ to facility the traversal (Line 11). Each element in the queue is a
vertex in G∗ to be visited, which is prioritized by its distance to the nearest data object
computed so far in the NN array. The virtual vertex v∗ is inserted into PQ to initialize
the traversal (Line 12). A loop is run to keep popping out vertices from PQ (Lines 13
to 21). The vertex with the smallest distance to the nearest data object in PQ is popped
out first (Line 14). When a vertex vi is popped out and visited for the first time, vertices
connected to it that have not been visited before are inserted into PQ (Lines 16 to 20).
For each such vertex vj , if the path through vi is shorter than the existing shortest path
to vj , we update the distance to nearest data object of vj(N [j].nndistance) to be the
nearest neighbor distance of vi plus the weight of the edge between vi and vj (Line
18), and the nearest data object of vj(N [j].nnid) is updated to be that of vi (Line 19).
When PQ becomes empty, all vertices will have been visited and their nearest data
objects are computed and stored in the NN array N . The array N is returned and the
algorithm terminates (Line 22).

3.2 Query Processing

Once the NN array is computed, an ANN query can be processed by first locating the
vertex vj on which every query object qi lies and then retrieving the nearest data object
of vj from the NN array, which is returned as the nearest data object of qi. If a query
object is lying on an edge, we locate both vertices of the edge and retrieve their nearest
data objects. We compare the distances of the two retrieved data objects to qi and return
the closer one as the nearest data object of qi. We omit the pseudocode of the query
processing procedure for conciseness.

Continuing with the example shown in Fig. 2, where there are two query objects q1,
q2 represented by the two red circles, q1 is at v1 and q2 is at v11. The nearest neighbor of
v1 is o1 and the nearest neighbor of v11 is o2 as shown in the NN array listed in Table 2.
VIVET reports o1 and o2 as the nearest neighbors of q1 and q2, respectively.

3.3 Generalizing the Algorithm

VIVET can be generalized to directed networks and to process ANN queries without
precomputation with small changes.

When applied to directed networks, we need to update the traversal for single-source
graph shortest path computation as follows. When a vertex is visited (Line 15 of Algo-
rithm 1), we retrieve its inbound edges and add the vertices connected by these edges
to the priority queue PQ to be visited next, i.e., we update Line 16 of Algorithm 1
to be “for every vertex vj that has an edge pointing to vi”. We need to reverse the di-
rection of the edges of the virtual vertex v∗ such that they point from the data object
vertices to v∗ instead of from v∗ to the data objects. By doing so, we find the shortest
“reverse” paths from the data objects to the vertices in the network, which are the short-
est paths from the vertices to the data objects. This approach is correct because we still
use Dijkstra’s algorithm graph expansion procedure, but restricting the direction of the
edges to ensure that the paths found are going from the vertices to the data objects. Our
experiments show similar behavior of VIVET for both undirected and directed graphs.

When processing an ANN query without the precomputed NN array, we run the
single-source graph shortest path computation online. We find the shortest paths from
the virtual vertex v∗ to all query objects instead of all network vertices. When the short-
est paths are found, the data object oj on the shortest path to query object qi is returned
as the nearest data object of qi. The correctness of doing so is guaranteed by Lemmas
1 and 2 above straightforwardly. Our experiments verify the efficiency of VIVET in
dynamic scenarios, especially when the number of query objects is large. For example,
when the network has over one million vertices and 211 data objects, dynamic VIVET
requires 0.5 seconds to answer an ANN query with 216 query objects while the other
state-of-the-art algorithms requires at least 0.8 seconds.

A multi-source Dijkstra’s algorithm has been proposed in the literature [15] that
starts by adding multiple source vertices into the priority queue PQ. The focus of [15]
is to run the multi-source Dijkstra’s algorithm to test the reachability of different points
and find out the most time-consuming shortest path in the graph for emergency services.
Another study [16] shares a similar idea and uses a multi-source shortest path approach
for location privacy. To the best of our knowledge, we are the first to apply this technique
for finding ANNs in spatial networks.

Table 3: Road networks.

Name # vertices # edges Description

NY 264,346 733,846 New York (Undirected)

COL 435,666 1,057,066 Colorado (Undirected)

FLA 1,070,376 2,712,798 Florida (Undirected)

NW 1,207,945 2,840,208 Northwest USA (Undirected)

CAL 1,890,815 4,657,742 California & Nevada (Undirected)

E 3,598,623 8,778,114 Eastern USA (Undirected)

W 6,262,104 15,248,146 Western USA (Undirected)

CTR 14,081,816 34,292,496 Central USA (Undirected)

Europe 18,010,173 42,188,664 Europe (Directed)

USA 23,947,347 58,333,344 Full USA (Undirected)

3.4 Algorithm Complexity

Next, we analyze the complexity of VIVET. We denote the number of data objects as
n and the number of query objects as m. We also denote the numbers of vertices and
edges in G∗ as |V ∗| and |E∗|, which equals to |V |+1 and |E|+ n, respectively.

Precomputation. Creating the augmented graph G∗ takes O(|V |+1+|E|+n) time.
The time for traversing G∗ to compute the nearest data objects is determined by the time
of the single-source shortest path algorithm. We use Dijkstra’s algorithm, which has a
time complexity of O((|E∗|+ |V ∗|) log |V ∗|) in the worst case by using a binary heap
for the priority queue PQ, which is equivalent to O((|E|+ |V |+ n) log |V |). Overall,
the time complexity of the precomputation of VIVET is O((|E| + |V | + n) log |V |).
The size of the NN array is linear to the number of vertices, i.e., O(|V |).

Query processing. The query time complexity of VIVET is linear to the number of
query objects. For each query object, the nearest neighbor is computed in constant time
from the NN array. Therefore, the query time complexity of VIVET is O(m).

4 Experiments

We experimentally compare the performance of VIVET against the state-of-the-art NN
algorithms, IER-PHL [17], G-tree [12] and INE [18]. All algorithms are implemented
in C++ and run on a 64-bit virtual node with a 1.8 GHz CPU and 64 GB memory from
an academic computing cloud (Nectar [19]) running on OpenStack.

4.1 Experimental Setup

We run ANN queries on real-world road network datasets as listed in Table 3, which are
created for the 9th DIMACS Challenge [20]. Each undirected network has two datasets,
a travel time dataset and a travel distance dataset, the edge weight of which correspond
to the travel distance and the travel time between vertices, respectively. Note that the
directed network Europe has only the travel time dataset. As the experimental results

on the travel distance dataset are consistent with that on the travel time dataset in most
cases, we focus on showing experiments on the travel time dataset due to the space limit.
We use two methods to create data object sets: mapping real-world POIs and syntheti-
cally sampling. We use eight types of real-world POIs extracted from OpenStreetMap
by Abeywickrama et al. [17]. We also synthetically sample vertices of the networks to
be the data objects and query objects following two distributions, uniform and clus-
tered. The uniform distribution simulates scenarios where areas with more vertices tend
to have more objects, while the clustered distribution simulates scenarios where objects
may be clustered in some areas. The maximum number of vertices is 50 in every cluster.

Table 4: Experiment settings.

Parameters Values Default

Road Networks Refer to table 3 NW

number of data objects 27 to 216 211

number of query objects 27 to 216 210

Real-world POIs Refer to Table 2 in [17] Parking

Synthetic data objects distributions Uniform, Clustered Uniform

Synthetic query objects distributions Uniform, Clustered Uniform

Table 4 shows the range of variables we use in our experiments. In a default setting,
we run queries on 211 uniformly distributed data objects and 210 uniformly distributed
query objects over the network NW. Park is the default POI type in experiments using
real-world POIs as data objects. We first show the algorithm performance on undirected
graphs and then compare algorithms on directed graphs.

4.2 Precomputation Costs

We compare the precomputation costs of VIVET with the index-based NN algorithms
IER-PHL and G-tree by measuring their time and memory consumption.

Effect of the network size. Figures 3a and 3b show the precomputation costs over
different networks. All algorithms require longer time and larger memory to build in-
dices when the network has more nodes and edges. Compared with IER-PHL and G-
tree, VIVET reduces the precomputation time by two orders of magnitude and saves
the memory consumption by one order of magnitude due to a single traversal over the
network. Compared to the precomputation costs on the travel distance dataset as shown
in Table 1, both G-tree and VIVET require consistent precomputation costs on the two
datasets. IER-PHL, however, requires less memory on the travel time dataset by taking
advantage of the travel speed (geometrical length divided by travel time) to improve the
effectiveness of the highway decomposition, thereby reducing the index size.

Effect of the number of data objects. Figures 3c and 3d show the effect of the num-
ber of data objects on the precomputation costs. Varying the number of data objects
has little effect on the precomputation costs of both IER-PHL and G-tree because their
precomputation costs are dominated by the process of building network indices. As for
VIVET, its precomputation time increases with the growing number of data objects,

10
1

10
2

10
3

10
4

10
5

10
8

NY COLFLA NW CAL E W CTRUSA

C
P
U

t
i
m
e

(
s
)

VIVET

IER-PHL

G-tree

(a) Precomputation vs. networks.

10
1

10
2

10
3

10
4

10
5

NY COLFLA NW CAL E W CTRUSA

M
e
m
o
r
y

(
M
B
)

VIVET
IER-PHL
G-tree

(b) Memory consumption vs. net-
works.

10
1

10
2

10
3

10
4

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
s
)

number of data objects

VIVET
IER-PHL
G-tree

(c) Precomputation time vs. # data ob-
jects.

10
1

10
2

10
3

10
4

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

M
e
m
o
r
y

(
M
B
)

number of data objects

VIVET
IER-PHL
G-tree

(d) Memory consumption vs. # data
objects.

Fig. 3: Precomputation costs.

which is caused by the increasing number of virtual edges added in the augmented net-
work G∗. Even though the precomputation costs of VIVET are impacted by the number
of data objects, the number of data objects in real world scenarios usually lies within
a reasonable range. For example, the number of parking spaces in NW is 5098 [17],
which lies in the range between 212 and 213 as shown in Fig. 3c. The precomputation
time of VIVET in this range is approximately 1.5% of that of IER-PHL and 0.5% of that
of G-tree. In terms of memory consumption VIVET has a constant index size when the
number of data objects changes as its index size is determined only by the number of
vertices. Its index size is at least an order of magnitude smaller than those of IER-PHL
and G-tree.

4.3 Query Costs

We further analyze the query performance of IER-PHL, G-tree, INE, and VIVET by
comparing their query times.

Effect of the network size. Figure 4 shows the query times of the four algorithms
on different networks. The query times of G-tree and INE increases rapidly with the
growing network size due to their larger search region, while those of IER-PHL and
VIVET are much less impacted by the network size. However, IER-PHL consumes
large size of memory for large networks as shown in Fig.3b. VIVET outperforms the
other three algorithms by more than two orders of magnitude over all networks, which
shows the efficiency and scalability of VIVET in large networks.

Effect of the number of data objects. Figure 6 shows the query times of uniform and
clustered data objects when varying number of data objects. VIVET again outperforms
the state-of-the-art by more than two orders of magnitude. Furthermore, the query times
of VIVET is unaffected by the size and distribution of data objects as it only performs
a simple lookup to answer an ANN query.

10
1

10
2

10
3

10
4

10
5

NY COLFLA NW CAL E W CTRUSA

C
P
U

t
i
m
e

(
m
s
)

VIVET

IER-PHL

G-tree

INE

Fig. 4: Query time vs. network size.

10
1

10
2

10
3

10
4

10
5

c
o
u
r
t
h
o
u
s
e

f
a
s
t
f
o
o
d

h
o
s
p
i
t
a
l

h
o
t
e
l

p
a
r
k

p
o
s
t
o
f
f
i
c
e

s
c
h
o
o
l

u
n
i
v
e
r
s
i
t
y

C
P
U

t
i
m
e

(
m
s
)

VIVET
IER-PHL
G-tree

INE

Fig. 5: Query time vs. real data objects.

Effect of the number of query objects. Figure 7 shows the effect of the number of
query objects on the query performance. Query objects in Fig. 7a are generated follow-
ing the uniform distribution while those in Fig. 7b are generated following a clustered
distribution. As expected, the query times of all algorithms grow with the increasing
number of query objects. VIVET is two orders of magnitude faster than the most ef-
ficient baseline IER-PHL. Furthermore, our scalability experiments show that VIVET
can answer an ANN query with 10 million query objects within 0.3 seconds, while
the other state-of-the-art algorithms require more than 2 seconds to answer such large
number of query objects.

Real-world object sets. Figure 5 shows the query times of different algorithms
when data objects are generated based on real-world POIs. VIVET outperforms other
algorithms by more than two orders of magnitude on all types of POIs examined.

4.4 Experiments on Directed Graphs

Since G-tree requires undirected graphs for its graph partitioning phase while IER-PHL
assumes undirected graphs for indexing, we only compare the performance of VIVET
against INE on the directed network Europe.

Precomputation cost. Figure 8 shows the precomputation time of VIVET when
the number of data objects varies. The precomputation time required by VIVET in-
creases slightly with increasing number of data objects, which is consistent with the
experiments in undirected graphs. The memory consumption of VIVET on Europe is
137 MB, which remains linear to the number of vertices in the network.

Query cost. The query times of VIVET and INE on directed network are compared
in Fig. 9. VIVET outperforms INE by up to four orders of magnitude in this set of
experiments. When the number of data objects increases, the query performance of
INE improves due to the smaller size of the search region. However, even for dense
data objects, VIVET still outperforms INE by three orders of magnitude.

10
1

10
2

10
3

10
4

10
5

10
6

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
m
s
)

number of data objects

VIVET
IER-PHL
G-tree

INE

(a) uniform data objects

10
1

10
2

10
3

10
4

10
5

10
6

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
m
s
)

number of data objects

VIVET
IER-PHL
G-tree

INE

(b) clustered data objects

Fig. 6: Effect of the number of data objects on query time.

10
1

10
2

10
3

10
4

10
5

10
6

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
m
s
)

number of query objects

VIVET
IER-PHL
G-tree

INE

(a) uniform query objects

10
1

10
2

10
3

10
4

10
5

10
6

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
m
s
)

number of query objects

VIVET
IER-PHL
G-tree

INE

(b) clustered query objects

Fig. 7: Effect of the number of query objects on query time.

10
1

10
2

10
3

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
s
)

number of data objects

VIVET

Fig. 8: Precomputation time (directed
graph).

10
1

10
2

10
3

10
4

10
5

10
6

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
m
s
)

number of query objects

VIVET
INE

10
1

10
2

10
3

10
4

10
5

10
6

2
7
2
8
2
9
2
10
2
11
2
12
2
13
2
14
2
15
2
16

C
P
U

t
i
m
e

(
m
s
)

number of data objects

VIVET
INE

Fig. 9: Query time (directed graph).

5 Related Work

Nearest neighbor queries are studied extensively under various data spaces including
spatial network spaces, while all nearest neighbor queries are studied mainly in the
Euclidean spaces. We review studies on nearest neighbor queries in spatial networks
and all nearest neighbor queries in the Euclidean space.

Nearest neighbor queries in spatial networks. A key issue in NN query processing
in spatial networks lies in the high cost of computing the shortest path distance between
two objects, which may require a graph traversal. Studies of NN queries in spatial net-
works thus explore various techniques to reduce the shortest path distance computation.
Papadias et al. [18] propose two spatial network NN algorithms: IER and INE. The IER
algorithm is based on the observation that the spatial network distance between two
objects must be no smaller than their Euclidean distance. The INE algorithm gradually
expands the search region from the query object so that the first data object reached
when expanding is the query answer. Kolahdouzan et al. [21] precomputes a network
Voronoi diagram over the spatial network, which partitions the network into sections

(network Voronoi cells). An NN query can then be answered simply by locating the net-
work Voronoi cell containing the query object q . More recent studies use index struc-
tures to help to improve the query efficiency. The distance browsing algorithm [22]
uses the spatially induced linkage cognizance (SILC) index, which stores the network
shortest path distance between every pair of vertices. The ROAD [23] algorithm hier-
archically partitions the spatial network and precomputes the spatial network distance
between border vertices within every partition, where border vertices of a partition are
the vertices connecting to other partitions. The G-tree [12] algorithm also partitions the
network but differs from ROAD on the tree structures and searching paradigms.

An experimental paper [17] compares the performance of various network NN al-
gorithms. They also proposed an algorithm named IER-PHL that combines the IER al-
gorithm with a shortest path computation technique named pruning highway labelling
(PHL) [13]. It is found that the query time of IER-PHL outperforms the other NN algo-
rithms in most cases. G-tree is also competitive because it requires lower precomputa-
tion costs than IER-PHL, while ranks the second in terms of the query time. INE, on the
other hand, is the most efficient algorithm when the data objects are densely distributed.

All Nearest Neighbour in Euclidean Space. ANN algorithms in the Euclidean space
can be grouped into index-free and index-based algorithms. We start with the index-free
algorithms. Clarkson et al. [24] consider the case where query and data objects belong
to the same set. and split the space into small cubic cells of equal size. The distance from
a query object to its nearest neighbor is hence bounded by the distance to the nearest
cell occupied by a data object. Vaidya et al. [25] use a similar idea but optimize the
splitting scheme. When query objects and data objects are in two different sets, the ANN
query is also called the nearest neighbor join (NN-join) query. Xia et al. [6] propose the
Gorder algorithm to process the ANN-join query. Gorder divides query objects and data
objects into several blocks and schedules the searching order of data objects’ blocks so
that promising nearest neighbor candidates are visited first. Zhang et al. [7] propose a
hash-based algorithm that hashes the query objects together with the data objects and
divides them into buckets. For query objects in a bucket, nearest neighbors only need to
be searched from data objects in the same or overlapping buckets. Chen et al. [10] use
the Hilbert curve to hash the data objects into grid cells.

Index-based ANN algorithms compute the query with a traversal over a precom-
puted index structure. Böhm et al. [3] propose an R-tree based algorithm named MuX.
They optimize the I/O cost by organizing input data using large pages and take advan-
tage of a secondary search structure within pages to optimize the efficiency. Zhang et
al. [7] propose two algorithms for the case where the data objects are indexed with an
R-tree. Their first algorithm named multiple nearest neighbor (MNN) finds the nearest
neighbor of every query object by computing an NN query on the R-tree of data objects.
The processing order of the query objects is optimized so that close query objects can be
handled consecutively. Their second algorithm named batched nearest neighbor (BNN)
finds nearest neighbors of multiple query objects at a time. BNN first groups multiple
query objects and traverses the R-tree of data objects once for finding the nearest neigh-
bors of a group. Chen et al. [5] use a Quad-tree variant called the MBRQT to index the
data objects and propose a metric called NXNDIST (MINMAXMINDIST) to prune the
search space during index traversal. Sankaranarayanan et al. [26] propose another prun-

ing metric called MAXMAXDIST. Yu et al. [8] use iDistance [27] as the index structure.
They propose an algorithm named iJoin that takes advantage of the data partitioning
strategy of iDistance. Emrich et al. [9] propose to index the data objects with an SS-tree
and use trigonometric relationships to prune the search space during index traversal.

6 Conclusion

We studied all nearest neighbor queries in spatial networks and proposed a scalable
and efficient algorithm named VIVET. Compared with the methods adapted from state-
of-the-art nearest neighbor algorithms, VIVET reduces the precomputation and query
costs by one to two orders of magnitude. The improvements are achieved via a shared
computation technique that computes the nearest neighbors for all query objects at the
same time with a single graph traversal. Extensive experiments using real road networks
confirm the advantages of VIVET in terms of precomputation time, storage space, and
query time compared to the state-of-the-art network NN algorithms.

Since existing index structures for nearest neighbor queries suffer due to large mem-
ory consumption, while VIVET effectively overcomes this limitation, it is worth to ex-
plore the applicability of the VIVET index structure on other variants of the nearest
neighbor problems in spatial networks in the future. Our preliminary results already
confirmed the advantage of VIVET on NN queries compared to the state-of-the-art in
terms of precomputation costs and query performance.

Acknowledgment

This work is supported in part by Australian Research Council (ARC) Discovery Project
DP180103332.

References

1. Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing
on spatial networks. Multimedia systems 15(5), 295–308 (2009)

2. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor moni-
toring in road networks. In: VLDB. pp. 43–54 (2006)

3. Böhm, C., Krebs, F.: The k-nearest neighbour join: Turbo charging the kdd process. Knowl-
edge and Information Systems 6(6), 728–749 (2004)

4. Weinberger, R.R., Karlin-Resnick, J.: Parking in mixed-use us districts: Oversupplied no
matter how you slice the pie. Transportation Research Record: Journal of the Transportation
Research Board (2537), 177–184 (2015)

5. Chen, Y., Patel, J.M.: Efficient evaluation of all-nearest-neighbor queries. In: ICDE. pp.
1056–1065 (2007)

6. Xia, C., Lu, H., Ooi, B.C., Hu, J.: Gorder: an efficient method for knn join processing. In:
VLDB. pp. 756–767 (2004)

7. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in spatial
databases. In: SSDBM. pp. 297–306 (2004)

8. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based knn join processing for high-
dimensional data. Information and Software Technology 49(4), 332–344 (2007)

9. Emrich, T., Graf, F., Kriegel, H.P., Schubert, M., Thoma, M.: Optimizing all-nearest-
neighbor queries with trigonometric pruning. In: SSDBM. pp. 501–518. Springer (2010)

10. Chen, H.L., Chang, Y.I.: All-nearest-neighbors finding based on the hilbert curve. Expert
Systems with Applications 38(6), 7462–7475 (2011)

11. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD. pp.
47–57 (1984)

12. Zhong, R., Li, G., Tan, K.L., Zhou, L.: G-tree: An efficient index for knn search on road
networks. In: CIKM. pp. 39–48 (2013)

13. Akiba, T., Iwata, Y., Kawarabayashi, K.i., Kawata, Y.: Fast shortest-path distance queries on
road networks by pruned highway labeling. In: ALENEX. pp. 147–154 (2014)

14. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik
1(1), 269–271 (1959)

15. Eklund, P.W., Kirkby, S., Pollitt, S.: A dynamic multi-source dijkstra’s algorithm for vehicle
routing. In: ANZIIS. pp. 329–333 (1996)

16. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy.
In: Pervasive. pp. 152–170. Springer (2005)

17. Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road networks: a jour-
ney in experimentation and in-memory implementation. PVLDB 9(6), 492–503 (2016)

18. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: VLDB. pp. 802–813 (2003)

19. http://nectar.org.au/research-cloud/
20. http://www.dis.uniroma1.it/challenge9/
21. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network

databases. In: VLDB. pp. 840–851 (2004)
22. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial

databases. In: SIGMOD. pp. 43–54. ACM (2008)
23. Lee, K.C., Lee, W.C., Zheng, B., Tian, Y.: Road: A new spatial object search framework for

road networks. TKDE 24(3), 547–560 (2012)
24. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: FOCS. pp. 226–

232 (1983)
25. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry prob-

lems. In: STOC. pp. 135–143 (1984)
26. Sankaranarayanan, J., Samet, H., Varshney, A.: A fast all nearest neighbor algorithm for

applications involving large point-clouds. Computers & Graphics 31(2), 157–174 (2007)
27. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.: Indexing the distance: An efficient method to knn

processing. In: VLDB. vol. 1, pp. 421–430 (2001)

