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Abstract A common cause of traffic congestions is the concentration of in-
tersecting vehicle routes. It can be difficult to reduce the intersecting routes in
existing traffic systems where the routes are decided independently from vehi-
cle to vehicle. The development of connected autonomous vehicles provides the
opportunity to address the intersecting route problem as the route of vehicles
can be coordinated globally. We prototype a traffic management system for
optimizing traffic with connected autonomous vehicles. The system allocates
routes to the vehicles based on streaming traffic data. We develop two route
assignment algorithms for the system. The algorithms can help to mitigate
traffic congestions by reducing intersecting routes. Extensive experiments are
conducted to compare the proposed algorithms and two state-of-the-art route
assignment algorithms with both synthetic and real road networks in a sim-
ulated traffic management system. The experimental results show that the
proposed algorithms outperform the competitors in terms of the travel time
of the vehicles.

Keywords Road Networks · Traffic Management Systems · Streaming Traffic
Data · Route Assignment · Shortest Path

1 Introduction

A common cause of traffic congestions is the concentration of intersecting
vehicle routes at road junctions [7,29]. The intersection of the routes can lead
to long waiting times of the vehicles at junctions. The problem caused by
intersecting routes can be particularly severe in metropolitan areas, where
traffic congestions are at their worst [25]. In our view, the main reason for
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the concentration of intersecting routes is that vehicle routes are generated
without coordination. For example, many vehicle drivers prefer to follow the
shortest path from source to destination without considering that the path
may intersect with the routes of other vehicles. It is difficult to solve the
intersecting route problem with existing traffic systems, where vehicle drivers
decide their routes independently. Although the impact of intersecting routes
can be mitigated with innovative junction designs [1,3], the transformation of
an existing junction normally requires significant financial input and time. In
addition, due to spatial constraints or heritage conservation, it may not be
possible to alter a junction.

Fortunately, the rise of connected autonomous vehicles (CAVs) provides a
great opportunity to address the problem. It is estimated that over 85% ve-
hicles sold on the automobile market will be connected autonomous vehicles
(CAVs) within two decades [2,27]. The rapid growth of CAVs is encouraging
innovation of traffic management solutions [22], which can bring significant
benefits, such as the improvement of traffic efficiency [19] and the reduction
of fuel consumption [21]. In this work, we focus on reducing route intersection
with CAVs. Compared to human-driven vehicles, CAVs have two significant
advantages in addressing the intersecting route problem. First, CAVs can re-
port their trip information, such as the source and destination of a trip, to
a central traffic management system (TMS). CAVs can also report detailed
traffic data to the TMS at real time. By collecting the information from all
the vehicles, the TMS can accurately predict traffic demands and traffic condi-
tions over a road network, allowing route planning that optimizes system-wide
traffic efficiency. The second advantage of CAVs is that they can follow the
exact routes given by the TMS without making unpredictable changes to the
routes during their trips. This makes the traffic optimization highly effective
as the traffic can evolve as planned.

The architecture of a prototype TMS is illustrated with Figure 1. CAVs
and a route allocator are connected with each other through a communication
infrastructure. Real-time traffic data, such as the travel time at a road link, are
continuously fed into the route allocator. Upon receiving a navigation request
from a CAV, the route allocator assigns a route to the vehicle such that the
vehicle will avoid the areas with a large number of intersecting routes. As all
the routes are allocated in this way, the chance of traffic congestions caused
by the intersecting routes is minimized across the whole network.

Fig. 1: The architecture of a TMS for traffic optimization with CAVs based on route allo-
cation
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In order to reduce the impact of intersecting routes, a future TMS needs to
coordinate the route of CAVs based on innovative route allocation algorithms.
Figure 2 illustrates the effects of an ideal route allocation algorithm. The
left sub-figure shows three suboptimal routes with two route-intersections. As
vehicles may have to wait at the junctions with intersecting routes, there can
be considerable delay of traffic flow going through the junctions. The right sub-
figure shows the altered routes. There is no intersecting route and the overall
length of the routes does not increase significantly from the previous case. As
a result, the travel time of the vehicles can be reduced from the previous case.

Fig. 2: (a) Intersecting routes between three pairs of source-destination, S1-D1, S2-D2, and
S3-D3. (b) Routes between the same source-destination pairs without intersections. Routes
are shown on Euclidean space for the sake of simplicities

We propose two route allocation algorithms. Due to the NP-hardness of
traffic optimization problems [14], our algorithms use heuristics for efficient
computation. The two algorithms differ in the scope of traffic information
that is used for searching the routes. The first algorithm, Local Detour Algo-
rithm (LDA), uses traffic information that is confined to specific road links or
road junctions, which are explicitly explored during route allocation. The sec-
ond algorithm, Multiple Intersection Reduction Algorithm (MIRA), enlarges
the scope of traffic information by using a global view of traffic conditions
based on a heatmap, which is constructed based on a grid partitioning of the
road network. The heatmap cells contain the average travel time in the cor-
responding city blocks. With this heatmap, new routes can bypass entire city
blocks that are affected by intersecting routes. This work is extended from our
previous study on streaming route allocations [17].

The contributions of our work are summarized as follows.

– We show a coordinated traffic system architecture with connected au-
tonomous vehicles that can lead to significant improvements in traffic man-
agement.

– We define a route optimization problem based on the streaming traffic data
provided by CAVs.

– We propose two dynamic route assignment algorithms, LDA, and MIRA,
which can address the optimization problem by reducing the intersections
among the allocated routes.

– We evaluate the proposed algorithms with a prototype traffic management
system based on traffic simulation. Our experiments are conducted with
a synthetic road network and a real road network against two state-of-
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the-art route assignment algorithms. The experimental results show that
MIRA returns the routes with the best travel times in most situations.
Compared to other algorithms, MIRA also does a better job in avoiding
gridlocks in the road networks. The results show that MIRA is a ready-
deployable algorithm if traffic congestion information is available for the
route allocator.

This work is extended from our previous work [17] in several aspects. First, we
formally define a streaming route assignment problem that is important in ad-
vanced traffic management. Second, we show the details of two algorithms for
route intersection reduction. Third, we show the details of a prototype traffic
management system that uses the proposed algorithms in traffic optimization.
Fourth, the experiment section is extended comprehensively by including the
results on the effects of stochastic delays of queries, the proportion of CAVs
and human-driven vehicle, and the batch size of queries. The extended exper-
iments also compare the computation times of the algorithms.

2 Related Work

Route assignment concerns the generation of routes for a large number of
vehicles. Route assignment based optimization algorithms can be oriented to-
ward an equilibrium or a disequilibrium. In an equilibrium state, any change
to the existing routes will not bring benefit to the traffic. Equilibrium can
be further divided into user-equilibrium [28] and system-equilibrium [4]. In
a user-equilibrium state, all the users with the same source-destination pair
will be assigned the same route. Differently, system-equilibrium requires the
minimization of the total travel time of all the users. The users with the
same original-destination pair may be assigned different routes. A compari-
son of the two equilibrium types shows that system-equilibrium can lower the
total travel time of all vehicles with a slight increase of the total travel dis-
tance [5]. Disequilibrium-oriented route assignment does not aim to optimize
traffic based on the full knowledge of traffic conditions and traffic demand [6].
Instead, it is focused on the evolution of route choices based on the users’ ex-
perience and their limited knowledge of traffic conditions and traffic demand.
Our work aims to achieve system-equilibrium.

Route assignment can be based on static settings or dynamic settings.
Under static settings, traffic flow is assumed to be constant when comput-
ing all the routes [16]. Static route assignment is suitable when the traffic
flow is nearly constant during a period. Dynamic route assignment, on the
other hand, is suitable when traffic conditions change frequently [6,11]. Unlike
static route assignment, dynamic route assignment needs to consider the time-
varying traffic conditions that affect the vehicles during their travel. To reach
equilibrium in dynamic route assignment, solution procedures may be needed
such that the system basically becomes a single global navigation system for
all the vehicles [23,24]. We focus on dynamic route assignment. However, we
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do not use iterative procedures due to the high computational costs of the
procedures.

There are route assignment methods based on traffic diversification. These
methods use certain random factors in route assignment to prevent traffic con-
gestions. Nguyen et al. [18] propose an algorithm that can reduce the average
travel time by more than 30% while keeping the routes close to the shortest
routes. The algorithm aims to diversify traffic at junctions but it does not con-
sider the intersection of routes. Another algorithm, Self-Adaptive Interactive
Navigation Tool (SAINT), can also help to reduce travel time significantly [15].
For a specific source-destination pair, SAINT creates k candidate routes, which
can lead to the minimum increase of congestion levels. Then, the algorithm
tries to assign different candidate routes to different vehicles that will travel
from the source to the destination. Zhang et al. [30] propose an approach,
named DIFTOS, which diversifies traffic based on congestion predictions. For
a given pair of source and destination, the approach first computes a shortest
path. Then, all the road links on the path are checked against the existing
routes that pass through the links. If a traffic congestion would happen at a
link on the new route, a reroute is performed such that the route will bypass
the link. DIFTOS needs to maintain a data structure for checking the traffic
load of individual road links at different time slots. Due to this reason, it can
be more expensive than other approaches in terms of computation time and
storage space. Among these methods, SAINT is the best approach for compar-
ison with our algorithms. We compare the proposed algorithms with SAINT
in the experiments.

It is a common goal for route assignment methods that the routes are
not significantly deviated from shortest paths. There are many algorithms for
computing shortest paths, such as Dijkstra’s algorithm [10], A* algorithm [12],
and Overdo A* algorithm [13]. Shortest paths can also be computed in different
ways, e.g., using time-dependent edge weights, which means the weights can
change depending on the time that a vehicle will arrive at the edges [9].

3 Problem Definition

We consider route assignments for vehicles moving in a road network, which
can be represented as a directed graph, G = (V,E), where V is the set of
vertices (road junctions or road ends) and E is the set of edges (road links). A
vehicle submits a navigation request to a traffic management system when it
is ready to start a trip in the road network. The navigation request contains
a source s and a destination d. The traffic management system then assigns
a route r to the vehicle. We assume that all the vehicles follow the assigned
routes as they are CAVs.

The travel time of a vehicle with route ri can be delayed by another vehicle
with route rj . One major factor that causes travel time delays is the existence
of intersecting routes, which was not considered in aforementioned earlier work.
We say that two routes ri and rj intersect at a common vertex v, i.e., v ∈ ri∩rj ,
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if the routes cross v from two conflicting approaches. Two approaches conflict
if the traffic from only one of the approaches can pass the junction at any
time. Travel time delays can also be related to the traffic load of a road. When
the traffic load exceeds the capacity of the road, the flow speed of the road
drops, resulting in a longer travel time. The effect of one vehicle on the travel
time of another vehicle can be generalized by a delay function ε(ri|rj), which
is the travel time delay added to a vehicle with route ri due to the presence
of a vehicle with route rj . Currently we can model this function empirically
but it would be interesting to mathematically model this function from basic
principles. We also note ε(ri|rj) = 0 when ri = rj as the vehicle will not affect
itself in travel time. The epsilon function can yield a non-zero value when i
and j are different. That is, the existence of a vehicle can cause a certain level
of delay to the travel time of another vehicle.

Assuming vehicles with routes in set R′ are affected by vehicles with routes
in set R, the delayed travel time of the former set of vehicles can be de-
noted as DTT (R′|R). The shortest travel time of a vehicle with route r is
DTT ({r}|∅), which is achieved when the road network is empty of vehicles.
Assuming n other vehicles are already in the road network when the vehicle
starts its trip, that is R = {r1, r2, ..., rn}, the travel time of the vehicle can
potentially be affected by all the n vehicles. This can be modelled using the
following equation.

DTT ({r}|R) = DTT ({r}|∅) +

n∑
j=1

ε(r|rj) (1)

Streaming Route Assignment Problem Given the travel times on the
edges in a road network graph, a set of existing routes and a source-destination
pair, the problem asks for a route between the source and the destination such
that the total travel time of all existing vehicles is minimized. The problem
is different from other route assignment problems in that the travel times on
the edges and the set of existing routes can change in a streaming fashion.
Assuming Rcandidate is the set of all candidate routes for a source-destination
pair and n is the total number of routes, the optimal route r∗ can be defined
as follows.

r∗ = arg min
r∈Rcandidate

DTT ({r}|∅) +

n∑
j=1

ε(r|rj) (2)

Similar to many existing route assignment problems, the streaming route
assignment problem is also computationally intractable for immediate use. Our
proposed algorithms do not aim to find the optimal routes. Instead, the algo-
rithms find the routes that effectively help to reduce traffic congestions based
on heuristics. The algorithms are suitable for handling streaming navigation
requests and they are computationally inexpensive.
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4 Streaming Route Assignment Algorithms

We propose two route assignment algorithms that work with streaming traffic
data. The algorithms can be used in a traffic management system that receives
navigation requests from users and assigns routes to the users. We assume
that the users will follow the allocated routes. Our algorithms can work with
three types of streaming data. The first is the source and the destination of
vehicle trips. A vehicle submits the information when it is ready to start a
trip. Based on the source-destination pairs, the algorithms generate routes. A
newly-generated route will be stored as it may affect the generation of routes in
the future. The second type of streaming data is the travel times on individual
road links. When a vehicle passes through a road link, its travel time spent on
the link is reported to the system. The average travel times on road links are
updated periodically so they can show the most recent traffic flow conditions.
The third type of streaming data is the updated routes. When a vehicle reaches
the end of a road link, the vehicle’s route is shortened as the link is removed
from the route. The traffic management system considers the shortened route
for generating routes in the future because there can be less intersecting routes
and lower traffic load due to the change of the route.

The first algorithm, LDA, aims to avoid intersecting routes at individual
junctions, which are explicitly explored during the search for a route. The
second algorithm, MIRA, considers traffic information in a significantly larger
scope by using a heatmap of travel times at the city level. The heatmap reflects
the impact of intersecting routes in different city blocks. MIRA can help vehi-
cles detour around entire city blocks affected by intersecting routes, allowing
the discovery of routes at the global level, the level that is beyond individual
road links and intersections. MIRA suggests longer detours instead of focusing
on avoiding individual intersections. The reason is the surrounding area of a
congested intersection tend to be affected by the congestion. Therefore, one
can reduce the impact of the congestion by detouring the whole affected area.

Both algorithms use a reservation graph that maintains the count of
routes at road links. LDA uses the graph to check the existence of intersecting
routes. MIRA uses the graph to predict the traffic load at road links. The
graph is same to the road network graph except that it keeps a reservation
count at each edge of the road network. The count keeps the number of routes
passing through the edge. By allocating a route, we increase the reservation
count of all its road segments by one. A reservation count decreases by one
when a vehicle leaves the corresponding road link. Due to the dynamic nature
of traffic, reservation counts can become very different between road links over
time, even if they are incremented at the same time initially.

An example of the reservation graph is shown in Figure 3. As shown in the
left sub-figure, at time t1, there are two vehicles (V1 and V2) travelling on two
intersecting streets. Both vehicles are going to pass E. The right sub-figure
shows the situation at time t2. As vehicle V1 has passed E, the reservation
count on eA,E changes from 1 to 0. Similarly, we can see the change of reserva-
tion count at other edges. As we assume that time plays no role, the reservation
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Fig. 3: An example reservation graph. There are 5 vertices (A-E) and 8 directional edges. A,
E, and C are located on one street. B, E, and D are located on another street. Reservation
counts are shown at the corresponding edges. The routes of the vehicles (V1, V2, and V3) are
shown as dashed lines. The left sub-figure shows the graph at time t1. The right sub-figure
shows the graph at a later time t2.

graph may not provide a correct estimation of the intersecting routes and pre-
dicted traffic loads. For example, two vehicles with intersecting routes may
arrive at a common junction at different times. If the time gap between the
arrival of the two vehicles is significantly large, it is unlikely that one vehicle
needs to wait for another at the junction. However, the impact of the esti-
mation error on the results is limited when a large number of vehicles are
considered.

4.1 Local Detour Algorithm (LDA)

The intuition behind LDA is that the travel time of a vehicle can be reduced
if the vehicle spends less time waiting for conflicting traffic at road junctions.
LDA (Algorithm 1) is based on A* algorithm [12], which considers a heuris-
tic function in addition to the minimal travel cost from the source during the
search for shortest paths. In order to detour junctions used by vehicles with in-
tersecting routes, LDA uses a heuristic function based on a delay-value caused
by intersecting routes. With the incorporation of the delay-value, the resultant
route is less likely to intersect with the existing routes.

The details of LDA is shown in Algorithm 1. For any edge em,n in the road
network graph G(V,E), there is a Weightm,n, which is the average travel time
on the edge. The weight is periodically updated by the traffic management
system based on the travel times reported by CAVs. When two or more routes
intersect at a junction, there is a conflict between the edges used by the routes.
In Line 15, LDA identifies the edges that conflict with edge em,n. This step
is done with the help of the reservation graph. An edge e conflicts with edge
em,n if all the following conditions are met: a) e ends in n; b) e and em,n are on
different roads, e.g., they have different street names; c) the reservation count
of e in RG is equal to or above 1. For example, let us assume that we want
to find the edges that conflict with eB,E at time t1 using the scenario shown
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Algorithm 1 Local Detour Algorithm
Input: Road network graph G(V,E), reservation graph RG(V,E), source s, destination d,

and intersection factor α. For any edge em,n in G, there is a corresponding edge em,n

in RG.
Output: Route r from s to d
1: // Vertices in Q are always sorted based on the travel cost between s and the vertices.
2: Q← Empty-Priority-Queue()
3: for m ∈ V do
4: costm ←∞
5: m.previous← NIL
6: Q.insert(m)
7: end for
8: costs ← 0
9: while Q is not empty do

10: m← vertex in Q with the lowest cost to s
11: remove m from Q
12: if m = d then
13: break;
14: end if
15: for n ∈ End points of the edges starting from m do
16: CE ←Edges conflicting with em,n

17: Delaym,n ← 0
18: if |CE| > 0 then
19: MATT ← Maximum average travel time in CE
20: Delaym,n ← αMATT
21: end if
22: if costn > costm +Weightm,n +Delaym,n then
23: costn ← costm +Weightm,n +Delaym,n

24: n.previous← m
25: end if
26: end for
27: end while
28: m← d
29: L← Empty-Linked-List()
30: L.append(m)
31: while m 6= s do
32: m← m.previous
33: L.append(m)
34: end while
35: Reverse L
36: Return L

in the left sub-figure of Figure 3. There are two edges, eA,E and eC,E , which
end in E and are on a different street than eB,E . However, as the reservation
count for eA,E is 1 but the reservation count for eC,E is 0, only eA,E can be
regarded as a conflicting edge.

LDA uses a delay-value as an additional travel cost of an edge (Line19).
The delay value is computed by multiplying an intersection factor α and the
maximum average travel time on the conflicting edges, MATT (Equation 3).
Given an edge em,n, the MATT is obtained by checking the weight (average
travel time) of the edges that conflict with em,n. The maximum weight is
set as the MATT (Line 19). A vehicle tends to experience more delay at an
intersection when there are more vehicles that need to cross the intersection
from conflicting approaches. As the travel time of a link generally increases
when there are more vehicles on the link, MATT is defined based on the
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maximum travel time on conflicting links to reflect the most significant impact
from the conflicting traffic. The delay of a vehicle can also be affected by the
traffic load of the vehicle’s own road link. It would be interesting to consider the
factor in addition to the impact from the conflicting traffic. We will consider
the factor in our future work as we focus on the impact of intersecting routes
in this study.

Delay = αMATT (3)

A longer average travel time on a road link generally implies that the traffic
load at the link is higher. With an increase of the traffic load on conflicting
edges at a road junction, the number of conflicting routes increases. As a result,
a vehicle tends to spend a longer time waiting at the road junction. This is
the reason that the Delay is proportional to the maximum average travel time
MATT . By decreasing the intersection factor, the weight is decreased, which
means the travel cost between two adjacent vertices in the road network graph
is lower. Consequently, the search can be expanded to more vertices. However,
there can be a higher chance that a returned route intersects with existing
routes. On the contrary, increasing the intersection factor can help to avoid
more intersecting routes. We show the effect of this hyper parameter α in
Section 5.4.1. (Although we can update the Delay in a more sophisticated way,
the results only show minor improvement over the aforementioned approach.
Therefore we are not reporting the results of the more sophisticated version
in the paper. We use LDA as our first algorithm and design a fundamentally
different one with MIRA.)

As LDA utilizes Dijkstra’s search procedure but with different edge weights,
it has the same time complexity and storage cost which are O(|V |log|V |+ |E|)
and O(|V | + |E|), respectively. The cost of updating the reservation graph is
O(|E|). The cost for updating the reservation graph with a shortened route is
O(1).

4.2 Multiple Intersection Reduction Algorithm (MIRA)

Similar to LDA, MIRA requires a road network graph and a reservation graph.
Details of the algorithm are shown in Algorithm 2. In addition to the two
graphs, MIRA uses a heatmap based on the travel times on road links. The
intuition behind MIRA is that the travel time of a route can be reduced
more effectively by avoiding entire city blocks that are affected by intersect-
ing routes. Existing route assignment algorithms, such as SAINT and other
diversification-based approaches, do not attempt to make long detours at the
city level. They focus on not assigning traffic to the same route. The routes
given by these algorithms generally go in one direction, from source to destina-
tion, with minor deviations from the shortest paths. MIRA, on the other hand,
enables a higher level of flexibility of choosing travel directions on the route.
This is achieved based on two data structures. The first is a heatmap that
shows normalized average travel times on road links in different city blocks.
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As the concentration of vehicles (and the intersections of their routes) in a
city block generally leads to a relatively high average travel time in the block,
the difference between adjacent heatmap values shows the direction of traffic
flows at the global level. The difference between heatmap values of adjacent
cells can be considered as a direction from the cell with higher heat to the
cell with lower heat. As observed in the real world, road users that are stuck
in a traffic congestion tend to move away from the congestion where possible.
As the heatmap values are proportional to the average travel time, the dif-
ference between adjacent heatmap values shows the direction of flows at the
global level. The second data structure is the reservation graph, which helps to
show the direction of traffic at individual road junctions. MIRA minimizes the
product of the heatmap value and the reservation count in computing routes.
This not only helps vehicles to avoid a large number of intersecting routes
altogether by detouring around city blocks affected by those routes, but also
helps vehicles to avoid individual road junctions that are affected by intersect-
ing routes within a block. The heatmap is periodically updated based on the
latest traffic information sent from CAVs. Line 15 of Algorithm 2 computes
the weight of edge em,n, Weightm,n, which is computed by multiplying the
heatmap value for the edge (Hm,n) with the reservation count (RCm,n).

The heatmap is constructed by mapping the whole road network space
into a grid. Cells in the grid represent rectangular blocks in a city. For each
cell of the grid, the average travel time on road links is computed. As we fo-
cus on mitigating congestions in metropolitan areas, we assume that the road
links in the whole grid are homogeneous, which means the road links have a
similar length, capacity, and speed limit. Consequently, the difference between
heatmap values can be more relevant to the difference in the number of inter-
secting routes than the random attributes of road links. (A non-homogeneous
version can be trivially derived based on the concept of a quadtree.) The av-
erage travel time of each cell is normalized by dividing the value by the total
value of all the cells. The normalized values are filled into the heatmap. The
heatmap value for an edge em,n, Hm,n, is the value of the heatmap cell that
covers the edge. If m and n are in different cells, Hm,n is the average of the
two corresponding values.

MIRA also uses Dijkstra’s search procedure. So, the time complexity of
MIRA is O(|V |log|V | + |E|). The storage cost is O(|V | + |E|). The cost of
updating the reservation graph is O(|E|). The cost for updating heatmap is
O(|E|).

4.3 Difference Between MIRA and LDA

MIRA and LDA aim to minimize traffic congestion by reducing intersections
between routes, but they achieve this with different approaches. LDA tries
to avoid route-intersections by suggesting detours at the road-link level. On
the other hand, MIRA can suggest longer detours as MIRA can capture the
traffic conditions at the global level. Dividing map into cells and updating
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Algorithm 2 Multiple Intersection Reduction Algorithm
Input: Road network graph G(V,E), reservation graph RG(V,E), source s, destination d,

and heatmap H. For any edge em,n in G, there is a corresponding edge em,n in RG. For
any edge em,n in RG(V,E), there is a reservation count RCm,n, which is the number
of the routes that pass through the edge.

Output: Route r from s to d
1: // Vertices in Q are always sorted based on the travel cost between s and the vertices.
2: Q← Empty-Priority-Queue()
3: for m ∈ V do
4: costm ←∞
5: m.previous← NIL
6: Q.insert(m)
7: end for
8: costs ← 0
9: while Q is not empty do

10: m← vertex in Q with the lowest cost to s
11: remove m from Q
12: if m = d then
13: break;
14: end if
15: for n ∈ End points of the edges starting from m do
16: Weightm,n ← Hm,n ×RCm,n

17: if costn > costm +Weightm,n then
18: costn ← costm +Weightm,n

19: n.previous← m
20: end if
21: end for
22: end while
23: m← d
24: L← Empty-Linked-List()
25: L.append(m)
26: while m 6= s do
27: m← m.previous
28: L.append(m)
29: end while
30: Reverse L
31: Return L

the heatmap for each cell makes MIRA more responsive to the change of
traffic conditions. We should note that MIRA considers traffic conditions at
both the link level and the global level by acquiring reservation counts and
heatmap values. Therefore, it can suggest more effective routes than LDA.
The experiments in Section 5 confirm the advantage of MIRA.

4.4 super-MIRA (sMIRA)

There can be many variations of MIRA based on the heatmap. We describe
one variation, called super-MIRA (sMIRA). In sMIRA, we update reservation
counts (RCs) by heatmap values rather than a constant value as in MIRA.
The algorithm increments the reservation count of an edge on a newly allo-
cated route by the edge’s corresponding heatmap value. The heatmap value is
deducted from the reservation count once the vehicle with the route leaves the
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edge. Our experiments show that sMIRA can work even better than MIRA in
certain circumstances.

5 Experiments

Our experiments compare the proposed algorithms, LDA and MIRA, against
two baseline algorithms in terms of the quality of the allocated routes. The first
baseline algorithm is called First-In-First-Assigned Fastest (FIFA-Fastest).
This algorithm computes routes based on the current travel times using Dijk-
stra’s algorithm. The second baseline algorithm is SAINT [15] as described in
Section 2, which is a state-of-the-art traffic assignment algorithm. Our exper-
iments also compare MIRA with its variation, sMIRA.

5.1 Experimental Platform

We build a prototype traffic management system that consists of two com-
ponents, a route allocator and a traffic simulator. The route allocator re-
ceives navigation queries from the simulator and computes routes based on
the queries. The routes are given to the traffic simulator, which simulates ve-
hicles based on the routes and outputs the travel times of the vehicles. The
simulator used in our experiments is SMARTS [20]. The simulator performs
realistic simulations based on microscopic traffic models. It has been calibrated
with real traffic [20] and its behaviour accurately reflects real traffic, as evi-
denced by our experiments with a real traffic dataset from TomTom [26]. It
also simulates adaptive traffic lights as in the real world, which adjust traf-
fic signal timing in real time based on dynamic traffic flow conditions. The
architecture of the experimental platform (Figure 4) is similar to the afore-
mentioned system architecture (Figure 1) except that the traffic system is
replaced with SMARTS simulator. Three types of streaming data are fed into
the route allocator, including navigation requests, updated routes and travel
times on road links.

Fig. 4: Relationship between route allocator and SMARTS

Navigation requests are shown as Nt1 , Nt2 , and Nt3 in Figure 4. The queries
are sent to the route allocator, which returns the corresponding routes, Rt1 ,
Rt2 , and Rt3 . Whenever a route is generated, it is stored by the route allocator
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as the new route may affect the generation of routes in the future. Whenever
a simulated vehicle reaches the end of a road link, SMARTS removes the road
link from the vehicle’s route. The updated route is then sent to the route
allocator, which replaces the old route with the updated one. The updates can
happen at irregular times. For example, route Rt1 is assigned before route Rt2

but the update of the former route, R′
t1 , comes after the update of the later

one, R′
t2 . SMARTS periodically reports average travel time (ATT) on all road

links to the route allocator. ATT on a road link is calculated as

∑n
i=1 TTi
n

,

where n is the number of vehicles that have passed the link since the last report
and TT is the travel time that a vehicle spent on passing through the link.
We should note that ATT is computed as link length divided by speed limit
if there had been no vehicle passing through the link since the last report. In
Figure 4, the reports are sent at time ts and time t2s, where s is the interval for
reporting the information. The interval is set to 80 seconds in our experiments
based on preliminary experiments and should be set based on city specific
traffic conditions.

If MIRA is used as the route assignment algorithm, the route allocator
creates a heatmap once it receives ATTs on all road links from SMARTS. The
heatmap is based on a grid, which partitions the whole simulation area into a
specified number of rows and columns. To compute the heatmap values, the
route allocator first computes the average ATTs for individual grid cells. The
heatmap values are then created by normalizing the average ATTs as follows.
Assuming the heatmap has X rows and Y columns and the average ATT of
a cell at row x and column y is ATTCx,y, the heatmap value of the cell is

computed as
ATTCx,y∑i=X,j=Y

i=1,j=1 ATTCi,j

. The route allocator will use the heatmap

to generate routes until the next time that it receives ATTs from SMARTS.
The flowchart of experiments is shown in Figure 5, which demonstrates

the relationship between the route allocator and the SMARTS simulator at
experiment run-time. The figure shows that the route allocator computes a
route for a generated trip query by utilizing the real-time heatmap (RTHM)
and the reservation counts (RCs). Once a route is computed, the route alloca-
tor updates the RCs for the road links on the route. The SMARTS simulator
updates RTHM and RCs during the simulations.

5.2 Performance Metrics

Traffic optimizations normally aim to minimize the travel time of vehicles. We
identify two goals based on the reduction of travel times. The goals can be
described with the delayed travel time DTT and the delay function ε shown
in Section 3. If we divide both sides of Equation 1 by DTT ({rmin}|∅), the
shortest possible travel time of a vehicle with the same source and destination
of r, we get the ratio of the vehicle’s delayed travel time to the shortest possible
travel time.
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Fig. 5: Flowchart of experiments

DTT ({r}|R)

DTT ({rmin}|∅)
=

DTT ({r}|∅)
DTT ({rmin}|∅)

+

∑n
j=1 ε(r|rj)

DTT ({rmin}|∅)
(4)

The first goal is to minimizing the average ratio for all individual vehicles.

min

[
1

n

n∑
i=1

DTT ({ri}|R)

DTT ({rmin
i }|∅)

]
=min

[
1

n

n∑
i=1

( DTT ({r}|∅)
DTT ({rmin}|∅)

+

∑n
j=1 ε(ri|rj)

DTT ({rmin
i }|∅)

)]
(5)

The total travel time of all the n vehicles in a road network can be repre-
sented with the following equation.

DTT (R|R) =

n∑
i=1

DTT ({ri}|∅) +

n∑
i=1

n∑
j=1

ε(ri|rj) (6)

The second goal is to minimizing the ratio of the total travel time to the
accumulated shortest travel times.

min

[
DTT (R|R)∑n

i=1DTT ({ri}|∅)

]
= min

[ ∑n
i=1DTT ({ri}|∅)∑n

i=1DTT ({rmin
i }|∅)

+

∑n
i=1

∑n
j=1 ε(ri|rj)∑n

i=1DTT ({ri}|∅)

]
(7)
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Based on the two goals, we define two metrics, Travel Time Ratio at In-
dividual level (TTRI) and Travel Time Ratio at System level (TTRS). TTRI
is defined in Equation 8, where BTT (vi) is the best theoretical travel time
of the shortest (fastest) route for a vehicle vi and TT (vi) is the actual travel
time of the vehicle for the given route. The best theoretical travel time is cal-
culated under the assumption that the road network is empty and the vehicle
never encounters a red light at any junction. Therefore it is always equal to or
smaller than the actual travel time. Consequently, TTRI is always equal to or
higher than 1. The best value of TTRI is 1. Different to TTRI, TTRS is based
on the total travel time of all the vehicles (Equation 9). TTRS is always equal
to or higher than 1. The best value of TTRS is 1.

TTRI =
1

|V|

|V|∑
i=1

TT (vi)

BTT (vi)
(8)

TTRS =

∑|V|
i=1 TT (vi)∑|V|

i=1BTT (vi)
(9)

We note that there is no meaningful TTRI and TTRS if there are grid-
locks in the simulated traffic system. A gridlock appears once an area is so
severely congested that no vehicle can make further movement. We observe
that gridlocks will eventually appear when the number of vehicles is beyond
a certain value, no matter which algorithm is used for routing. We call the
maximum number of vehicles that exist in a network without a gridlock the
gridlock threshold. Different algorithms can have different gridlock thresh-
olds. A higher gridlock threshold is better as the traffic network can function
with a larger number of vehicles. Our results do not show TTRI and TTRS
when the number of vehicles is beyond the gridlock threshold.

5.3 Experimental Settings

We evaluate the algorithms based on a synthetic road network and a real road
network. For a specific combination of settings, we first use our SMARTS sim-
ulator to generate source-destination data, which contains a number of time-
stamped source-destination pairs. To generate the data, we run a one-hour
simulation of peak-hour traffic. The traffic load, i.e., the number of vehicles
in the network, is kept constant during the period. The starting time, source
and destination of a vehicle are recorded when the vehicle starts to move
in the network. Once the vehicle reaches its destination, it is replaced by a
new vehicle with a random source and a random destination. The same set of
source-destination data is used for experimenting any algorithm in the setting.

The experiments are conducted on a computer with an Intel Core i7 CPU
running at 2.7 GHz. The computer has 16 GB of RAM. The operating system
is the 64-bit version of Windows 7.
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5.3.1 Synthetic Road Network

The synthetic network is based on a grid plan with two sets of streets. Each
set has 12 streets that are parallel to each other. A street in one set runs
at right angle to a street in another set. Traffic lights are installed at all
road junctions. Adjacent junctions are connected by a two-way road segment
that is 400 metres long. The speed limit for all the road segments is set to
40km/h, which is the common speed limit for many central business areas
across Australia. The default granularity of the heatmap for MIRA is 3× 3 as
the area can be fully divided at this granularity.

We evaluate the effects of two parameters on all algorithms. For each pa-
rameter, we run simulations with different values of the parameter while keep-
ing the other parameter at its default value. The first parameter is the number
of vehicles. The second parameter is the spatial distribution of source and des-
tination.

Number of Vehicles This parameter can have a significant impact on
travel times. As the number of vehicles increases, the number of intersecting
routes increases, leading to a higher chance of traffic congestions. A good
route assignment algorithm can suggest routes that lead to satisfactory travel
times even when there are a large number of vehicles. We vary the value of
this parameter between 1000 and 10000. The default value is 6000 because we
cannot run SAINT with 7000 or more vehicles.

Source-Destination Distribution Sources and destinations are gener-
ated with uniform distribution or Gaussian distribution. If a source or a
destination is generated with the uniform distribution, we randomly pick a
point from the road network as the source or the destination. With Gaus-
sian distribution, the sources and the destinations are more likely to be lo-
cated around the center of the road network area. We choose four source-
destination distribution scenarios: 1)Uniform-Uniform, 2)Uniform-Gaussian,
3)Gaussian-Uniform, and 4)Gaussian-Gaussian. These distributions represent
various traffic situations. Uniform-Uniform represents traffic flows in off-peak
hours. Uniform-Gaussian represents morning peak hours when vehicles go to
the city center from the suburbs. Gaussian-Uniform represents afternoon peak
hours when vehicles leave the city center to the suburbs. Gaussian-Gaussian
represents the highly spatially concentrated traffic. As the Gaussian-Gaussian
distribution (named as Gaussian in other experiments) shows the most signif-
icant impact of intersecting routes, it is used as the default value. Moreover,
it is more realistic than the uniform distribution for the central area of a city.

5.3.2 Real Road Network

The real road network covers a 30km×30km area of Melbourne (Figure 6). The
area is centred at the CBD of Melbourne. The speed limit of road segments, the
number of lanes on road links and the direction of road links are extracted from
OpenStreetMap (https://www.openstreetmap.org). This network has 20400
vertices and 25600 edges. To minimize the impact of variance in road links,
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this road network only contains freeways and arterial roads in the area. For
this network, we vary the number of vehicles between 10000 and 50000. We use
Gaussian distribution for generating sources and destinations. The granularity
of MIRA’s heatmap is set to a relatively low value, 3× 3, because the density
of roads is not high as we only use arterial roads. We do not include SAINT in
this experiment because the algorithm cannot return routes in a manageable
time based on this network. We would like to highlight that we do not directly
control the flow speed, but we set the speed limit of links based on the type
of the links. For arterials, the flow speed may not reach the free-flow speed
(the speed limit) when the roads are congested. This can be observed in many
peak-hour scenarios. Our simulator shows the fluctuation of flow speeds on all
the road links unless the traffic load is very low.

Fig. 6: The real road network used in the experiments. The map of the area is shown in the
background

5.4 Results

5.4.1 Changing α for LDA

We use the synthetic network to evaluate the α parameter. The locations of
sources and destinations are generated with Gaussian distribution. We test
the effect of α on TTRI (Figure 7). In this test, the number of vehicles varies
between 1000 and 4000. We vary the value of α between 0 and 2. We should
note that LDA behaves in the same way as Dijkstra’s algorithm when α is 0
because there is no time penalty for intersecting routes. As shown in Figure 7,
there is no significant difference between the α values when there are 1000
or 2000 vehicles. However, when there are 3000 vehicles, the TTRIs are 4.29
for α = 0 and 3.69 for α = 2. TTRIs are lower than the two values when
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α is 0.5, 1, and 1.5. This shows that the quality of the routes increases, i.e.,
TTRI drops, when α increases from 0. A positive α value can help to avoid
intersecting routes but vehicles may have to make a larger number of detours.
When α is beyond a certain range, 0.5-1.5 in our case, the time saved by
avoiding intersecting routes may be negated by the time spent on the detours.
Based on this result, we set α to 0.5 for the rest of the experiments.

Fig. 7: Results on LDA’s α. Lower TTRIs are better. Source-destination distribution is
Gaussian. Gridlock threshold for all α values is 3000

5.4.2 Synthetic Network

The following results compare the effects of the number of vehicles and the
source-destination distribution on the performance of four algorithms.

Number of Vehicles MIRA outperforms other algorithms except when
the number of vehicles is very low (Figure 8). When the number of vehicles
increases, TTRI and TTRS increase for all algorithms. This is understandable
as the number of intersecting routes generally increases when there are more
vehicles, leading to longer delays on the road. MIRA is the best algorithm for
avoiding gridlocks. The gridlock threshold of MIRA is 9600 while the gridlock
threshold of the second-best algorithm, SAINT, is 6800. As discussed earlier,
MIRA is more advanced than LDA as MIRA utilizes traffic information at
both the link level and the global level. Same to our expectation, MIRA’s
routes leads to shorter travel times compared to LDA’s. The result shows that
although LDA has a better performance compared to FIFA-Fastest, it does
not work as well as MIRA and SAINT.

Fig. 8: TTRI and TTRS (lower values are better) achieved with the synthetic road network.
LDA’s α is 0.5. Source-destination distribution is Gaussian. Gridlock thresholds of MIRA,
SAINT, FIFA-Fastest and LDA are 9600, 6800, 3000, and 3000, respectively

The vehicles tend to concentrate to certain sub-areas with SAINT while
they are more evenly distributed around the whole road network with MIRA
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Fig. 9: The change of vehicle distribution with time. The number of vehicles is 6800. Darker
areas have a higher density of vehicles. MIRA has less congestions than SAINT. Source-
destination distribution is Gaussian.

Fig. 10: Road links are coloured based on the number of routes that pass through them
when the number of vehicles is 6800. Routes in (a) are created by SAINT. Routes in (b) are
created by MIRA. The figure shows that there are less congested roads scheduled by MIRA
than SAINT. Source-destination distribution is Gaussian.

(Figure 9). Based on the global view of traffic flow conditions, MIRA can sug-
gest routes that bypass the sub-areas with slow traffic, leading to a better
distribution of the vehicles. This can significantly reduce the chance of grid-
locks. On the contrary, SAINT follows a local diversifying strategy without
considering traffic flow conditions in the large scope as MIRA. This can re-
sult in more intersecting routes, leading to the concentration of vehicles. The
difference between the two algorithms can also be observed in Figure 10. The
figure shows the total number of routes that go through the road links. We
can see that many road links in the central part of the road network are used
by more than 1000 routes with SAINT. This implies that there can be a high
number of intersecting routes in the area. The routes suggested by MIRA,
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however, do not go through the road links in the central area as much as the
routes suggested by SAINT.

Source-Destination Distribution As shown in Figure 11, all algorithms
perform well when the sources and destinations follow a uniform distribution.
MIRA has a small advantage over other algorithms in this situation. In the
morning peak hour (Uniform-Gaussian), the majority of trips are heading to-
wards the city center. Thus, the traffic in the city center is affected by an
increasing number of route-intersections. The result shows that MIRA outper-
forms other methods, while FIFA-Fastest and LDA reach gridlock. The results
show that TTRI increases significantly for all algorithms when the distribution
changes from Uniform-Uniform to other distributions. This is understandable
as there is a higher probability of route intersections when the sources or
destinations become clustered. At afternoon peak hour (Gaussian-Uniform),
vehicles are heading towards suburbs where no traffic congestion exists. In
this situation, the result indicates that MIRA, which uses a city block detour
strategy, can lead to extra detours. For the Gaussian-Uniform distribution,
SAINT achieves a lower TTI than MIRA. In this scenario, LDA can navigate
vehicles poorly but with no gridlock. The result with Gaussian-Gaussian dis-
tribution shows that MIRA outperforms SAINT while both FIFA-Fastest and
LDA suffers from gridlock.

Fig. 11: TTRI with two source-destination distributions. Lower TTRIs are better. LDA’s α
is 0.5. Number of vehicles is 6000

5.4.3 Real Network

For the real network, MIRA achieves the best performance among all the
algorithms (Figure 12). As expected, TTRI and TTRS increase for all algo-
rithms when the number of vehicles increases. The gridlock threshold of both
LDA and FIFA-Fastest is lower than that of MIRA by 10000. This shows that
the global view of traffic conditions used by MIRA helps to reduce intersecting
routes significantly. The gap of TTRI between MIRA and other two algorithms
becomes higher when there are more vehicles in the network. For example, the
gap of between MIRA and LDA is 0.136 with 10000 vehicles. The gap increases
to 1.467 with 30000 vehicles. We observe a similar trend in TTRS. Compared
to small road networks, such as the synthetic network shown earlier, large road
networks allow vehicles to make relatively longer detours in exchange for bet-
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Fig. 12: TTRI and TTRS achieved with the real road network (lower values are better).
LDA’s α is 0.5. Source-destination distribution is Gaussian. Gridlock thresholds of LDA,
FIFA-Fastest, and MIRA are 30000, 30000, and 40000, respectively. We do not include
SAINT because the algorithm cannot return routes in a manageable time with this network

ter travel times. MIRA can take this advantage by using the heatmap while
other algorithms cannot.

5.4.4 sMIRA versus MIRA

In this experiment, we compare MIRA and its variation, sMIRA, using a
more complex traffic scenario based on the synthetic network. The source-
destination pairs of 80% of the vehicles are generated with Gaussian distribu-
tion. For the rest of the vehicles, their trips start and end at random locations
on the border of the area, which means they pass through the area rather than
concentrating to the centre. In this experiment, the resolution of the heatmap
is set to 6 × 6 as it works best for both algorithms in this scenario. sMIRA
performs better than MIRA as sMIRA not only has a higher gridlock thresh-
old but also achieves a lower TTRI and a lower TTRS (Figure 13). As sMIRA
puts more weights on the city blocks that are currently affected by intersecting
routes, it can handle this scenario better than MIRA.

Fig. 13: TTRI and TTRS achieved by MIRA and sMIRA (lower values are better) with the
synthetic network. The source-destination distribution for 80% of the vehicles is Gaussian.
The source and destination of the rest of the vehicles are uniformly distributed on the border
of the area. Gridlock thresholds of MIRA and sMIRA are 12000 and 14000, respectively
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5.4.5 Other Considerations

We evaluate other factors that may affect the performance of MIRA. We also
measure the computation time of the algorithms.

Ratio of FIFA-Fastest Routes A common problem with traffic opti-
mizations is that vehicles may not follow the suggested routes in the real
world. For example, while CAVs can follow the exact routes given by MIRA, a
large number of human-driven vehicles may tend to follow the shortest paths
as they are not connected with a TMS. In this test, we assume that a portion
of the vehicles are not connected vehicles. Their routes are computed with
FIFA-Fastest. The routes of the remaining vehicles are given with MIRA or
SAINT. As shown in Figure 14, MIRA performs better than SAINT as it
achieves a lower TTRI when the ratio of FIFA-Fastest routes is between 0%
and 20%. SAINT leads to a gridlock when the ratio is higher than 20%. Differ-
ently, gridlock appears with MIRA when more than 40% routes are computed
with FIFA-Fastest.

Fig. 14: TTRI achieved when a portion of the routes are computed with FIFA-Fastest. The
synthetic network is used for this experiment. Lower TTRIs are better. Source-destination
distribution is Gaussian. Number of vehicles is 6000. SAINT leads to gridlocks when more
than 20% routes are given by FIFA-Fastest. Gridlocks happen with MIRA when there are
more than 40% FIFA-Fastest routes

Query Batch Size of MIRA We also test the impact of the query batch
size on the quality of the routes returned by MIRA. As the flowchart (Figure 5)
shows, trip queries are generated one by one, and the system computes a
route for each query. In this experiment, we do route assignment in batches
to see whether optimizing routes in batches can enhance traffic efficiency in
the whole network as we have more flexibility in assigning routes. We vary the
number of navigation requests that are processed in a batch between 1 and
50. This may change the dynamics of route allocation as it changes the stream
window size from 1 to 50. We randomize the order of the requests in each
run. Although processing queries in large batches with a large stream window
size may lead to certain improvement in system-wide traffic optimization, it is
normally unpractical as vehicles have to wait for a long time to get routes. As
shown in Figure 15, TTRI does not change significantly with different batch
sizes. In other words, processing requests in small random batches does not
have a significant impact on the quality of the routes. This shows that MIRA
is a ready-deployable algorithm. For example, there are approximately 57,000
people who live in the inner region of Melbourne and commute to work by
cars [8]. Assuming each of them makes one navigation request at a random
time during the typical peak hour period in Melbourne, 6.30am to 9am, there
will be approximately 7 requests per second. Based on our result, the stream
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window size can be set to a small value, e.g., one second, which leads to a fast
response time of the application without lowering the quality of routes.

Fig. 15: TTRI achieved by MIRA with different batch size of navigation requests. The syn-
thetic road network is used for this experiment. Source-destination distribution is Gaussian

Stochastic Delays for Route Update Messages The proposed TMS
is a centralized system that continuously communicates with CAVs. The TMS
needs to receive the route updates from all vehicles, which creates a large num-
ber of messages. The messages may arrive at the TMS with a certain level of
delays depending on various factors such as congestions in the communication
channel. We note that delays occurring before the start of driving are not con-
sidered as they do not affect traffic congestions directly. In this experiment, we
examine the impact of stochastic delays of route update messages on the out-
come of MIRA. We generate delays with a probability pdelay. When pdelay = 1,
all updates are delayed, while a probability pdelay = 0 means no delay exists.
If an update is delayed, the time length of the delay is generated based on a
uniform distribution in a range of [dmin, dmax]. In this test, we consider two
ranges of delay, [1, 3] minute (short delay) and [3, 20] minute (long delay). The
probability pdelay varies from 0 to 1 with step size 0.25. Figure 16 shows that
TTRI is almost stable for short delays and increases by 3% for long delays
when pdelay increases from 0 to 1. So, we can conclude that MIRA is robust
against stochastic delay of route updates.

Fig. 16: TTRI achieved by MIRA for two delays, Short Delay and Long Delay, with different
delay probabilities when route update messages are delayed. The synthetic road network is
used for this experiment. Source-destination distribution is Gaussian

Computation Time We show a comparison between the algorithms in
terms of computation time. The computation complexities of FIFA-Fastest,
LDA, SAINT, and MIRA areO(|V |log|V |+|E|),O(|V |log|V |+|E|),O(k|V |(|V |log|V |+
E)), and O(|V |log|V |+ |E|), respectively, where |V | is the number of vertices,
|E| is the number of edges and k is a hyper parameter for SAINT, which is set
to 5 as the value leads to the best performance of SAINT based on our tests.
We vary the number of vertices in a synthetic road network. For each setting,
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we create 5 batches of navigation requests, each of which has 10 requests. The
average computation time for creating one route is reported from each batch.
We then average the values from the 5 batches and report it in Figure 17. The
result shows that MIRA can solve a query within 0.1 second in the worst case.
Based on the aforementioned application scenario with Melbourne commuters,
the approximate number of navigation requests per second is 7. It will take
MIRA less than 0.7 second to process the requests in the worst case, which
means the processing speed can cope with the rate of incoming requests. This
again shows that MIRA is a ready-deployable algorithm.

Fig. 17: Average computation time for creating one route in a synthetic road network. LDA’s
α is 0.5. Source-destination distribution is Gaussian. Time is measured in milliseconds.
Logarithmic values of the time are shown

6 Conclusions

We have shown that using certain traffic heuristics in route allocation can
help to minimize the impact of intersecting routes while keeping computation
costs at a low level. We have also shown that route optimization can be more
effective when it considers not only the traffic conditions at individual road
links but also the difference in traffic conditions between the sub-areas of a
road network. In our future work, we will take time into consideration in order
to achieve even better traffic efficiency with MIRA. Also, we will consider other
contributing factors to the traffic delays (e.g., queue spillback) to make the
delay model more comprehensive. We hope our work can inspire more studies
on traffic management with connected autonomous vehicles.
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