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Abstract—The k nearest neighbor (kNN) query in road net-
works is a traditional query type in spatial databases. This query
has found new applications in the fast-growing location-based
services, e.g., finding the k nearest Uber cars of a user for ride-
sharing. KNN queries in these applications are non-trivial to
process due to the frequent location updates of data objects
(e.g., movements of the cars). This calls for novel spatial indexes
with high efficiency in not only query processing but also update
handling. To address this need, we propose an index structure
that uses a “lazy update” strategy to reduce the costs of update
handling without sacrificing query efficiency or answer accuracy.
We cache the location updates of data objects and only update
the corresponding entries in the index when they are queried. We
further propose a kNN query algorithm based on this index. This
algorithm takes advantage of the strengths of both the CPU and
the GPU. It first identifies the queried region and updates the
index over this region using the GPU. Then, it uses the GPU to
query the index and produce a candidate result set, which is later
refined by the CPU to obtain the final query answer. We conduct
experiments on real data and compare the proposed algorithm
with state-of-the-art kNN algorithms. The experimental results
show that the proposed algorithm outperforms the baseline
algorithms by orders of magnitude in query time.

I. INTRODUCTION

Location-based services (LBS) have become increasingly
popular with the prevalence of smart mobile devices. On-going
efforts are made to improve the user experience of mobile
LBS through improvements on query processing efficiency
over moving objects [1], [2], [3]. We study a basic type
of LBS queries, the k nearest neighbor (kNN) query, over
moving objects in road networks [1]. The kNN query reports
the k nearest neighbors of a given query object. We consider
data objects with location changes, i.e., moving data objects.
Note that even though moving data objects are considered, we
compute the kNN only based on a snapshot of the locations of
the data objects at query time. We do not compute the query
answer continuously as the data objects move, i.e., we are not
studying continuous kNN queries.

An example of such a query is to find the three nearest
Uber cars for a user, where the cars are moving and the
nearest cars are computed based on their distances to the query
object at query time. Figure 1 illustrates such a query. Nine
cars, denoted as o1, o2, ..., o9, are moving on a road network.
Their locations are stored in a query server. A user issues a
query containing her current location, e.g., 〈8.5, 6.5〉, to the
server to request three nearest cars. The server retrieves the
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Fig. 1: A kNN query example
current locations of the cars, computes the three nearest cars,
e.g., 〈o5, o2, o4〉, and sends them back to the user. The main
challenge to address such a query is that the server needs to
solicit constant updates from the cars to keep their locations
up-to-date at the time of query processing.

Existing techniques for kNN queries over static data objects
are not directly applicable for moving objects. Many of these
techniques rely on index structures fine-tuned for static data
objects. When applied to moving objects, the costs to maintain
such index structures may become too high to be practical.

The state-of-the-art road network kNN algorithm, V-tree [4],
allows dynamic object updates. It uses a balanced search tree
to index moving objects and precomputed tables to facilitate
network shortest path distance computation. Each object up-
date triggers an index update. This can be expensive when the
update frequency is high.

We propose an index structure for kNN queries in road
networks with high update efficiency. We make use of an
observation that object location updates only need to be
enforced on the index structure when the relevant objects are
queried. This allows us to simply cache a location update
upon receiving it instead of actually enforcing the update on
the index. At query time, we flush the cached updates into
the index before searching for the query answer. We design a
highly parallel algorithm using the GPU to update the index
and hence ensure a high update efficiency.

We design a kNN algorithm based on the proposed index.
This algorithm combines the strength of both the CPU and the
GPU. Upon receiving a query, it first uses the CPU to identify
the queried region and then uses the GPU to process the
cached updates in this region. To compute the query answer, it
follows a filter-and-refine scheme. It uses the GPU to compute
a candidate answer set and the CPU to compute a final answer.



GPUs have hundreds or thousands of cores that can run
in parallel. Such a feature suits nicely the tasks of (lazily)
processing the object location updates and finding the kNNs
at query time. In particular, the location updates of different
objects are all independent from each other, which can be
easily parallelized on a GPU. There are also challenges,
especillay in processing location updates of the same object.
Finding the latest location of an object with multiple cached
location updates may incur synchronization issues, since GPU
threads need to read the location updates, compare them with
the latest location of the object found so far, and (potentially)
update the latest location of the object in parallel. We address
the synchronization issues via taking advantage of the butterfly
shuffle functionality offered by GPUs that allows swapping
data between GPU threads with a low cost (detailed in
Section IV-C2). Once the latest locations of the data objects are
identified, we find the kNNs by using the GPU to compute the
distances between the query object and data objects in parallel
and the CPU to compare the distances computed. This way,
we take advantage of both the parallel power of the GPU and
the high efficiency in comparing and branching of the CPU.

In summary, we make the following contributions:
• We propose a novel index structure and an index updating

algorithm that caches and delays index updates until the
indexed entries to be updated are queried, to reduce the
index update frequency.

• We propose a highly parallel algorithm on the GPU for
cleaning cached updates simultaneously. The algorithm
adopts a low-cost shuffle strategy to solve the synchro-
nization issues and achieve a high concurrency.

• We propose a CPU-GPU collaborating kNN query pro-
cessing algorithm. The algorithm takes advantage of the
high parallel power of the GPU for distance computations
of a large number of data objects and the high efficiency
of the CPU in branching operations to compare the
distances and produce the final query answer.

• We perform cost analysis and extensive experiments. The
results confirm the superiority of the proposed algorithms
over the state-of-the-art algorithms.

The remainder of the paper is organized as follows. We
present preliminaries in Section II. We describe the proposed
index structure in Section III. We detail the index update
algorithms in Section IV and the kNN query algorithm in
Section V. We report cost analysis and experimental results
in Section VI and Section VII. We review related studies in
Section VIII and conclude the paper in Section IX.

II. PRELIMINARIES

We consider a road network represented as a directed graph
G = 〈V,E〉, where V is a set of vertices and E is a set of
edges. An edge −→eij ∈ E connects two vertices vi and vj . We
call vi and vj the source and the destination vertices of −→eij .
The weight of −→eij , denoted as −→eij .w, represents the cost for
traveling from vi to vj . Note that this model can be extended
to undirected graphs easily by replacing an undirected edge
with two directed edges of the same weight. In what follows,

TABLE I: Frequently used symbols

Notation Description
G a directed graph
v a vertex
−→eij an edge from vertex vi to vj
c a cell of G
o a moving data object
m a message of an object location update
ζ a message bucket
c.l the message list of cell c
S the set of messages read in by a bundle of threads

for simplicity, we use e instead of −→e to represent an edge
when the edge direction is irrelevant in the context.

We assume a static query object oq and a set of n data
objects O = {o1, o2, . . . , on}, of which the locations may
change over time.

Definition 1 (KNN query): Given a road network G, a
query object oq , a set of data objects O moving on G, and an
integer query parameter k, a kNN query over the set O returns
a size-k subset R ⊆ O such that, at the time when the query
is issued, ∀oi ∈ R, oj ∈ O\R : dist(oq, oi) 6 dist(oq, oj).

Here, function dist(oi, oj) returns the network distance
(length of the graph shortest path) from oi to oj .

We use a server that hosts an object location index to process
kNN queries. Each data object reports its location updates to
the server periodically. The time interval between two location
updates must not exceed a predefined value t∆. This interval
determines how far away the actual kNNs could be from the
kNNs computed at query time. A smaller t∆ produces more
accurate results but also brings a higher update workload. The
value of t∆ is constrained by the processing power of the
server. We consider it as a given system parameter.

We call each update a message and denote it by m,
m = 〈o, e, d, t〉. Here, m.o denotes the object that sends
the message, m.e denotes the edge on which m.o locates,
d denotes the distance from the source vertex of m.e to m.o,
and m.t denotes the update time.

The query server needs to process the messages in time to
produce accurate query answers. The workload for message
processing is proportional to

∑n
i fi, where fi is the update

frequency of object oi. When the number of objects is large
or the update frequency is high, a non-trivial update workload
will be incurred on the server.

III. G-GRID INDEX

We propose an index structure, named G-Grid, for process-
ing kNN queries over data objects with location updates in
road networks. The G-Grid index consists of three parts: a
graph grid that represents the road network (detailed in Sec-
tion III-A), an object table that indexes the locations of objects
(detailed in Section III-B), and a set of message lists that cache
the object location updates (detailed in Seection III-C).

A. Graph Grid
We use a graph grid, which is a grid based structure, to

index a road network graph. Each cell c in a graph grid stores
a set of vertices. Each vertex v is associated with a set of edges



where v is the destination vertex. We maintain two identical
graph grids in the memory of both the CPU and the GPU.
To reserve memory locality for highly parallel accesses on the
GPU, our graph grid is based on arrays instead of pointer-
based hierarchical structures. Next, we detail how to build a
graph grid for a given road network graph G.

Cells. Given a graph G = 〈V,E〉 and an integer δc, we map
the vertices in V into 2ψ × 2ψ cells where ψ = d 1

2 log2
|V |
δc e.

Each cell contains at most δc vertices. Here, we call δc the
cell capacity. It controls the maximum number of vertices in
a cell. We adopt the graph partitioning algorithm by Karypis
and Kumar [5] to partition the graph. This graph partitioning
algorithm iteratively divides a set of vertices into equal-
sized subsets while minimizing the number of edges between
vertices in two subsets. The two subsets form two neighboring
cells, which are further partitioned into smaller cells. After
the graph partitioning, we represent a cell c with a 3-tuple:
c = 〈Av, nv, ne〉. Here, c.Av is a size-δc array storing all the
vertices in c; c.nv is the number of vertices in c.Av; and c.ne
is the number of edges of which the source vertices are in c.

We store the cells in a one-dimensional array according to
the Z-curve [6]. For each cell c, we map its two-dimensional
coordinate (x, y), i.e., its position in the grid, to its Z-value
z, which is used as its position in the one-dimensional array.
Here, the Z-value of c is computed by interleaving the binary
representations of y and x. For example, a cell with a coor-
dinate (3,4) has a Z-value of (37)10 = (100101)2, which is
the result of interleaving (4)10 = (100)2 and (3)10 = (011)2.
This mapping transfers the two dimensional grid graph to a
one dimension array while preserves data locality. Nearby cells
in the grid graph often co-locate in the array. Data locality is
crucial to the performance of the GPU algorithm.

Vertices. Each element in c.Av represents a vertex v that
locates in c, v = 〈id,Ae, n〉, where v.id is the vertex ID,
v.Ae is a size-δv array that stores the edges having v as the
destination vertex, and v.n is the number of edges stored in
v.Ae. Array v.Ae may not be full, and v.n may not be δv .
Here, we use a parameter δv to control the number of edges
stored with a vertex. We call this parameter the vertex capacity.
If vertex v is the destination vertex of more than δv edges, we
create virtual vertices for v. A virtual vertex is represented as
v′ = 〈id′,A′e, n〉, and is stored in the same cell c. We add
edges beyond the capacity limit to these virtual vertices. The
number of virtual vertices for a vertex v is d vneδv e, where vne
is the number of edges having v as the destination vertices.

Edges. Each element in v.Ae represents an edge e of which
the destination vertex is v, e = 〈id, vs, w〉, where e.id is the
edge ID, e.vs is the source vertex, and e.w is the edge weight.

Inverted index. Together with the grid, we maintain an
inverted index (a hash table) that maps an edge to the IDs
of its source vertex and the cell where this vertex locates.

Figure 2 illustrates a graph grid. We partition a network
graph into 64 cells and map the cells into an array using a
Z-curve (the pink curve). We use the superscript to represent
the position of the cell in the array, e.g., c0 is the first element
in the array. Assume that δc = 5 and δv = 10. Each cell uses

a size-5 array for storing its vertices and each vertex uses a
size-10 array for storing its edges. The cell c21, for example,
contains an array A21

v where each element represents a vertex
in c21. For the first vertex v0, its array A0

e stores the edges
that have v0 as the destination vertex.

c0 c1 c4 c5 c16 c17 c20 c21

c2 c3 c6 c7 c18 c19 c22 c23

c8 c9 c12 c13 c24 c25 c28 c29

c10 c11 c14 c15 c26 c27 c30 c31

c32 c33 c36 c37 c48 c49 c52 c53

c34 c35 c38 c39 c50 c51 c54 c55

c40 c41 c44 c45 c56 c57 c60 c61

c42 c43 c46 c47 c58 c59 c62 c63
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v0id A0
e n0e · · · v4id A4

e n4e
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Fig. 2: A graph grid

B. Object Table

We use a hash table named the object table to store the latest
locations of all objects. Each entry of the table is a key-value
pair: o.id 7→ 〈c.id, e.id, d〉. Here, o.id is the ID of an object
o, c.id is the ID of the cell that contains the latest location of
o, e.id is the ID of the edge e that contains the latest location
of o, and d is the distance from the source vertex of e to o.
We store the object table in the CPU memory.

C. Message Lists
We use message lists to store messages sent from data

objects. We maintain a message list for each graph grid cell,
where the messages are stored in their chronological order. The
message list puts every δb messages into a bucket and use a
linked list to index the created buckets. Here, δb represents the
maximum number of messages allowed in a bucket, i.e., the
bucket capacity. A message list L maintains three pointers ph,
pt, and pl. Pointers ph and pt point to the head and the tail
buckets, respectively. Pointer pl points to a bucket ζi, before
which the buckets are locked (detailed in Section IV-C).

A bucket ζ is a 4-tuple: ζ = 〈Am, n, t, pn〉, where ζ.Am
is a size-δb array for storing messages, ζ.n is the number of
messages stored in ζ.Am, ζ.t is the time of the latest message
in ζ, and ζ.pn is a pointer that points to the next bucket.

We store message lists in main memory and send them to the
GPU for processing when needed, as detailed in Section IV-C.

IV. UPDATING THE G-GRID

The query server needs to update the G-Grid to keep the
object locations up-to-date. Existing studies update their index
structures when there is an object location update [4], [7].
This “eager” approach may have unnecessary updates which
are overwritten by new updates before any query is issued.
We take a “lazy” approach instead. When a message arrives,
we cache it in a message list and only process it when its
corresponding cells are queried. This enables skipping the
updates that do not impact query answers. We further propose
a GPU-based algorithm to clean up the unnecessary messages
before performing updates on the G-Grid. Next, we detail how
to cache a message and clean up cached messages.



A. Caching a Message
When a new message m is received, we first append m to

its corresponding cell. Then, we update the object table. This
procedure is summarized as Algorithm 1. The algorithm first
calls getCell() to identify the cell c to which m belongs.
This function takes the edge, i.e., m.e, and uses the inverted
index in the graph grid to identify cell c. Then, the algorithm
inserts m to the last bucket in the message list of c, denoted
as c.l. If the last bucket is full, the algorithm creates a new
bucket containing m and appends the bucket to c.l. If the
updated object m.o has moved to cell c from another cell c′,
in addition to the above procedure, the algorithm also adds
another message m′ to cell c′.

Algorithm 1: Updating the G-Grid
input : a message m and the G-Grid
output: updated G-Grid

1 c = getCell(m.e)
2 append(c.l,m)
3 if getCellFromOT(m.o) 6= c then
4 c′ = getCellFromOT(m.o)
5 append(c′.l, 〈m.o, null, null,m.t〉)
6 setOT(m.o, 〈c,m.e,m.d〉)

B. Message Cleaning

A message list of a cell records recent object location
updates in the cell. To locate objects in a cell, we retrieve the
messages cached in its message list and remove the obsolete
messages. We call this procedure message cleaning.

Message cleaning can be costly when the number of cached
messages is large. To improve the cleaning efficiency, we take
advantage of the parallel processing capability of the GPU.
Given a set L of message lists, we process L in four steps:
(1) preprocessing; (2) GPU memory preparation; (3) parallel
processing; and (4) result computation. These four steps are
summarized in Algorithm 2 and are detailed next. Here, “≪
≫” represents a function that runs in parallel on the GPU. The
integer parameter enclosed by ≪≫ represents the number of
threads.

1) Preprocessing: In this step, we lock all the message lists
in L and copy the valid buckets over to the GPU.

Let L be a message list in L. We create a new empty bucket
ζnew and append it to the tail of L. We let pointer pl pointing
to ζnew (Lines 1-3). This operation helps identify whether L
is under processing. Anytime before we send L to the GPU
for clean-up, we compare its pointers pl and ph. If the two
pointers are pointing to different buckets, we can skip L safely.

For each bucket ζ before pl, we check if the time of its
latest message, i.e., ζ.t, satisfies ζ.t− tnow < t∆. Here, tnow
represents the time of message cleaning. If yes, we keep the
bucket in L. Otherwise, we discard the bucket. Recall that
each object needs to send at least one update message in t∆
time. If the latest message in ζ is sent before tnow − t∆, all
messages in ζ must be outdated and can be discarded.

We copy the remaining buckets to the GPU. Assuming that
the number of remaining buckets in L is L.n, we create a
size-L.n array, denoted as L.A, for these buckets (Line 4). In

L.A, we attach each message with an ID of the cell to which
the message belongs, i.e., each message is now represented as
a 5-tuple: m = 〈o, c, e, d, t〉.

Algorithm 2: Message Cleaning

input : a set of message lists L
output: up-to-date object locations R

1 for each L ∈ L parallel do
2 if pl 6= ph then skip L
3 append a new bucket ζ to the tail of L; point pl to ζ

4 create a size L.n array L.A on the GPU
5 copy buckets before pl for all L ∈ L into L.A
6 create T and R on the GPU
7 T ← GPU X Shuffle≪L.n≫ (L.A, η)
8 R← GPU Collect ≪|T |≫ (T )

9 return R

2) Preparing Memory on the GPU: We create two hash
tables T and R to store the intermediate and final results of
message cleaning, respectively (Line 6).

The intermediate result table T stores candidate locations of
the objects. Each entry in T is a key-value pair, where the key
is an object o and the value is an array storing the candidate
messages of o, which will be detailed in Section IV-C.

The final result table R stores the final and up-to-date
locations of the objects. The key of an entry in R is the ID
of a cell c. The value of an entry is a set of objects in c.

For simplicity, we use T [o] and R[c] to represent the values
in T and R of a given key o and c, respectively.

3) Parallel Processing: We allocate a thread in the GPU
for each bucket in L.A. Every thread processes the messages
in its assigned bucket sequentially. Each time, all the threads
read in a message from their assigned buckets simultaneously.
To process a message m sent by an object o, a thread retrieves
from T [o] the latest message of o found so far, denoted as m′.
If m is newer than m′, the thread replaces m′ with m.

This approach has a synchronization issue. When multiple
threads are processing messages of the same object, these
threads will need to access the same entry in T . We will detail
how to solve this synchronization issue in Section IV-C.

4) Result Computation: We fill table R based on T . For
each entry T [o], we create a thread. The thread performs a
GPU Collect procedure to retrieve the latest message mnew

of o remaining in T after the parallel processing step. Then,
we insert an entry of o into R, and set its key is mnew.c. We
send the completed table R back to CPU, where we use R to
update the message lists of the corresponding cells.

C. Parallel Message Processing
Message processing in parallel using the GPU faces has

a synchronization issue where several threads need to access
the same entry in T . A straightforward approach to address
this issue is to lock T [o] once a thread has gained access to
it. Other threads can only access the entry when the lock is
released. However, this approach increases the waiting time
among threads and hence degrades the efficiency.

We propose a lock-free algorithm for message processing.
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Fig. 3: X shuffle on a bundle of 16 threads

1) Thread Bundles: We divide all the threads into equi-
sized bundles, each with 2η threads. These bundles are num-
bered from 0 to n− 1, where n = dL.n2η e. Recall that in table
T , we have created an array for each data object. This array
stores the candidate messages for each data object found in
these n bundles. Specifically, we set the size of each array as
n. Given an object o, we store the newest message of o found
by the i-th bundle as the i-th element T [o][i] in T [o]. Now we
only need to synchronize threads of the same bundle, which
is done by the GPU X Shuffle method described as follows.

Algorithm 3: GPU X Shuffle

input : a bucket L.A[thread id], an integer η, a differential factor µ,
and a hash table T

output: the updated hash table T
1 create a size-η array Γ
2 bundle id ← thread id/2η
3 for i = δm − 1 to 0 do
4 m← L.A[thread id][i]
5 for j = 1 to η do
6 mΓ ← Γ.getMessage(m.o)
7 if mΓ = null then add m to Γ
8 else if mΓ.t < m.t then replace mΓ by m in Γ
9 else m← mΓ

10 m← shuffle xor(m, 2η−j )

11 repeat µ(η) times
12 if T [m.o][bundle id].t < m.t then
13 T [m.o][bundle id]← m

2) X-Shuffle: We use GPU X Shuffle to solve the intra-
bundle synchronization issue with the following two steps:

Step 1. Given a bundle of 2η threads and a size-2η set S of
messages read in simultaneously by these threads, we keep the
latest message of each object while reducing the number of
messages of the same object in S to a small integer k, where
k is bounded by µ(η). Here, µ(η) is a function that maps η to
an integer much smaller than 2η (detailed in Section IV-D).

Step 2. For each object o in S, we repeat update T [o][i] for
µ(η) times, where i is the bundle number (Lines 12 to 14).

Step 1 is done using a special group of GPU functions
named warp shuffle. The warp shuffle functions allow active
threads within a thread group to exchange data at very low
costs. We utilize the warp shuffle function that performs
butterfly shuffle among the threads. This function makes each
thread to exchange the data with another thread, of which the
thread id is the bitwise xor result between the current thread id
and a parameter s, i.e., threads j and j⊕s will exchange data.

We call s the lane mask in a butterfly shuffle. For example,
given a bundle of 4 threads, a shuffle xor(2) exchanges
data between the 0th and 2nd, the 1st and 3th threads since
(00)2 ⊕ (10)2 = (10)2 and (01)2 ⊕ (10)2 = (11)2.

We make use of the butterfly shuffle and design a “cache-
and-shuffle” algorithm that can safely and efficiently reduce
the number of messages of the same object in S. We
summarize the cache-and-shuffle algorithm for each thread in
a bundle of threads in Lines 1 to 11 of Algorithm 3. The
algorithm creates a size-η array Γ for each thread, which
is used as a message cache. Then, the algorithm performs
butterfly shuffles for η times (Lines 5 to 10). The lane mask
of the j-th shuffle is set as 2η−j . After each shuffle, every
thread compares the message shuffled to it with messages in
its message cache. Assume that a message m has been shuffled
to a thread. This thread first finds the latest message of the
same data object as that of m, i.e., m.o, in its message cache Γ.
If no message of m.o is found or the found message, denoted
as mΓ, is outdated compared with m, the algorithm updates
Γ by replacing mΓ with m. Otherwise, the algorithm discards
m and updates its message to be shuffled as mΓ.

The above procedure guarantees that the number of mes-
sages of the same object in S will not exceed µ(η). At the
end of this procedure, we only need to further check messages
of the same object for at most µ(η) times to find the latest
message of each object in each bundle in T (Lines 11 to 13).

We further illustrate G X Shuffle using Fig. 3. Assume a
bundle of 16 threads indexed from (0000)2 to (1111)2. When
G X Shuffle starts, each thread reads a message as shown
in the row “before shuffle”. Here, we use a to e to represent
messages sent by five different data objects and the subscript
to represent the chronological order of the messages. For
example, a1 and a2 are both messages of object a while a1 is
an earlier message compared with a2. Each thread first adds its
message to its message cache. For example, the message cache
of thread (0010)2 is now [a1]. Next, the algorithm performs
a butterfly shuffle with a lane mask of 23 = (1000)2. Each
thread compares its new message with its message cache and
replaces outdated messages. The result is shown in the row
“shuffle xor(23)”. For example, message a5 is shuffled to
thread (0010)2. This thread looks for messages of a in its
cache and finds a1. Since a5 is newer, the thread replaces
a1 by a5 in the cache. As another example, message a1 is



shuffled to thread (10102). Since a1 is older compared with
the cached message a5 of thread (10102), the thread keeps
its cache as [a5] and uses a5 for the next shuffle. As a third
example, thread (0000)2 with a cache of [b0] gets a message a4

in the shuffling. This thread updates its cache as [a4, b0]. We
repeat the above procedure for 3 more iteration except that the
lane mask value decreases by a factor of 2 for each iteration.
The resultant messages of the threads are shown in the row
“shuffle xor(20)”. At the end, the number of messages of
the same object is no more than µ(4) = 2 (e.g., there are only
two messages of a: a4 and a5).
D. Upper Bound of the Number of Messages of an Object

Function µ(η) represents the maximum number of different
messages of an object in a bundle after message shuffling.
This parameter is critical to the algorithm performance since
it determines the number of updates required in T . In this
subsection, we show that µ(η) has a very small value com-
pared with the number of threads, i.e., 2η . To give an example,
assume a bundle of 32 threads. The maximum number of
different messages of an object will be reduced to 4 after
message shuffling. Since we need to perform η butterfly
shuffles, each thread only needs to process η+1 = 5 messages.
When updating the table T , each thread only needs to write
the table µ(η) = 4 times to guarantee that the latest message
of an object is successfully written in T . Compared to the
straightforward approach which needs to write T for η = 32
times, now the total number of operations is reduced to 9.

Theorem 1: Given a bundle of 2η threads where η > 3, the
number of messages of an object is bounded by µ(η) after the
shuffles, where

µ(η) =

{
arg mini λ(η, i) ≥ 2η λ(η, 8) ≥ 2η

2η − λ(η, 8) + 8 otherwise
(1)

Here, λ(η, i) = i
(
η+1

2

)
−∑i

j=1
(14−j)(j−1)

2 + i.
For bundles where the total numbers of threads is 2η =

16, 32, 64, 128, . . . , the corresponding µ(η) = 2, 4, 8, 16, . . . .
In the following, we prove the correctness of Theorem 1.

At the start of GPU X Shuffle, each thread reads a message.
Then, GPU X Shuffle shuffles messages between the threads.
In what follows, we use mα to represent a message that is
initially read in by thread α. Given two threads α and β, we
say that α covers β, if mβ will be shuffled to a thread that mα

has previously appeared. Suppose that mα and mβ are of the
same object and mα.t > mβ .t. Then, it is straightforward that
mβ will be replaced by mα if and only if α covers β. Thus,
given a bundle of messages, the maximum number of different
messages of an object remained after shuffling is equal to the
number of threads that cannot cover each other in the bundle.
We call such a set of threads as an exclusive set. Next, we
derive the maximum number of threads that a thread can cover.
After that, we derive the maximum size of an exclusive set.

Theorem 2: Given a size-2η thread bundle, let mα be the
message read in by thread α before shuffling. Message mα will
be shuffled to thread α⊕∑k

i=1 2η−k at the kth shuffle if it is
not replaced in the previous k − 1 shuffles, where k ∈ [1, η].

Proof: At ith shuffle, the lane mask is set as 2η−i. Thus,
after the kth shuffle, mα is shuffled to the thread α⊕ 2η−1⊕
2η−2 ⊕ · · · ⊕ 2η−k. It is straightforward that 2η−1 ⊕ 2η−2 ⊕
· · · ⊕ 2η−k =

∑k
i=1 2η−k. Thus, the theorem is proven.

Definition 2 (X-distance): Given two threads α and β, the
x-distance of α and β, X (α, β), is the number of sequences
result from splitting α⊕ β with 0.

For example, X (10, 1) = 2, since (01010)2 ⊕ (00001)2 =
(01011)2. We call a sequence an order-x sequence if splitting
the sequence with 0 results in x sequences. For example,
(01011)2 is an order-2 sequence.

Lemma 1: Given two threads α and β, α covers β if and
only if X (α, β) = 1.

Proof: (1) Since α covers β, mβ will be shuffled to one
thread after mα has been shuffled to the same thread. Let θ
be the thread. Thus, we have: (i) θ = α ⊕∑j

i=0 2η−i; (ii)
θ = β ⊕∑k

i=1 2η−i; and (iii) 0 6 j < k 6 η. Note that
j = 0 means mα has not been shuffled yet. Thus, we have
α⊕∑j

i=1 2η−i = β⊕∑k
i=1 2η−i. Let both sides perform xor

with the sequence (β ⊕∑j
i=1 2η−i), then we have α ⊕ β =∑j

i=1 2η−i⊕∑k
i=1 2η−i =

∑k
i=j+1 2η−i. The binary form of∑k

i=j+1 2η−i is a sequence of all 0 except the (j + 1)th to
kth bits. Thus, we have X (α, β) = 1.

(2) Let γ = α⊕β. If X (α, β) = 1, γ is an order-1 sequence.
Thus, there is one and only a continuous subsequence of 1
in the binary form of γ. Assume there are total η digits of
γ, the first 1 is at the jth bit and the last 1 at the kth bit
where 1 6 j 6 k 6 η. Then, the binary form of γ can be
written as

∑k
i=j 2η−i. Combine the equation with α = β⊕ γ,

we have α = β ⊕ ∑k
i=j 2η−i. Let both sides perform xor

with the sequence
∑j−1
i=0 2η−i, we have α ⊕∑j−1

i=0 2η−i =

β ⊕∑k
i=j 2η−i ⊕∑j−1

i=0 2η−i = β ⊕∑k
i=0 2η−i. Since α ⊕∑j−1

i=0 2η−i represents the thread index of mα at (j − 1)th

shuffle, β ⊕∑k
i=0 2η−i represents the thread index of mβ at

kth shuffle, and j − 1 < k, mα must cover mβ .
Combining (1) and (2), the theorem is proven.
Lemma 2: Given a size-2η bundle of threads, let C(α) be

the set of threads covered by α, we have |C(α)| =
(
η+1

2

)
.

Proof: Let β be a thread from C(α). Then, α ⊕ β is
an order-1 sequence, implying that its binary form is all 0
except the digits from j to k. Here, j and k are integers where
1 6 j 6 k 6 η. Since α⊕β has η bits, there are

(
η+1

2

)
possible

combinations of j and k values.
Lemma 3: Given a size-2η bundle of threads (η > 3), let

α and β be two threads from the bundle. The number of
messages covered by both mα and mβ satisfies that

|C(α) ∩ C(β)| =
{

6 X (α, β) = 2

0 X (α, β) > 2
(2)

Proof: Let ψ be a thread covered by both α and β. From
Lemma 1, we have X (ψ, α) = 1. We can write ψ ⊕ α as∑x2

i=x1
2η−i where x1 and x2 represent the positions of the

first and the last 1’s in the result sequence of ψ⊕α. Similarly,
we write ψ ⊕ α as

∑x4

i=x3
2η−i.



Case 1, X (α, β) = 2: From Definition 2, we know that α⊕β
contains two subsequences of 1. Let y1 and y2 be the positions
of the first and the last 1’s in the first subsequence, and y3 and
y4 be the positions of the first and the last 1’s in the second
subsequence, we can write α⊕β as

∑y2

i=y1
2η−i⊕∑y4

i=y3
2η−i,

where 1 6 y1 6 y2 < y3 6 y4 6 η. Since α⊕β = (ψ⊕α)⊕
(ψ ⊕ β), we get

∑x2

i=x1
2η−i ⊕∑x4

i=x3
2η−i =

∑y2

i=y1
2η−i ⊕∑y4

i=y3
2η−i. It is straightforward that the set {x1, x2, x3, x4}

is a one-to-one mapping of the set {y1, y2, y3, y4}. Combined
with the requirements that x1 6 x2 and x3 6 x4, there are
six possible ways of mapping. Hence, |C(α) ∩ C(β)| = 6.

Case 2, X (α, β) > 2: The sequences ψ ⊕ α and ψ ⊕ β are
both order-1 sequences. Thus, α⊕ β = (ψ ⊕ α)⊕ (ψ ⊕ β) is
at most an order-2 sequence. This contradicts to X (α, β) > 2.
Therefore, no such ψ exists and |C(α) ∩ C(β)| = 0.

Combining Cases (1) and (2), the theorem is proven.
Lemma 4: Given a size-2η bundle (η > 3), let {α, β, γ} be

an exclusive set of the bundle. We have

|
⋂

i∈{α,β,γ}

C(i)| =
{

1 X (α, β) = X (β, γ) = X (α, γ) = 2

0 otherwise
(3)

Proof: Case 2 is straightforward from Case 2 of
Lemma 3. We focus on Case 1. Let ψ1 = α ⊕ β and
ψ2 = α ⊕ γ. Thus, ψ1 and ψ2 are both order-2 sequences.
Further, ψ1 ⊕ ψ2 = β ⊕ γ, implying that ψ1 ⊕ ψ2 is also an
order-2 sequence. Let ψ′ = ψ1∧ψ2. We use p(x) to represent
a function that takes a sequence x and returns a new sequence
x ⊕ x′. Here, x′ is the sequence of shifting x from the right
to the left by 1 bit, concatenating it by 0, and removing the
first bit. For example, p((110001)2) = (010011)2. Intuitively,
each “1” in p(x) corresponds to a position where the bit value
changes in x. For an order-2 sequence x, the number of 1’s
in p(x) should be 4. Next, we prove the number of 1’s in
p(ψ1) ∧ p(ψ2) to be 2. Assume that the number of 1’s in
p(ψ1) ∧ p(ψ2) is larger than 2. Then, the positions where ψ1

and ψ2 change bit values have at least 3 same positions. Since
ψ1 and ψ2 are order-2 sequences, i.e., the number of positions
where the bit values change does not exceed 4, ψ1 ⊕ ψ2 is
at most an order-1 sequence. Similarly, if the number of 1’s
in p(ψ1) ∧ p(ψ2) is less than 2, ψ1 ⊕ ψ2 is at least an order-
3 sequence. Thus, the number of 1’s in p(ψ1) ∧ p(ψ2) is 2.
Let ψ′ be the number that satisfies p(ψ′) = p(ψ1) ∧ p(ψ2),
e.g., ψ1 = (010100)2, ψ2 = (100010)2, ψ′ = (011100)2. We
have X (α⊕ ψ′, α) = X (α⊕ ψ′, β) = X (α⊕ ψ′, γ) = 1, and
C(α)∩C(β)∩C(γ) = {α⊕ψ′}. Based on the construction of
ψ′, it must be the only one that satisfies the above equation.

Combining Case (1) and (2), the theorem is proven.
Lemma 5: Given a size-2η bundle and an exclusive set Λ

of the bundle where |Λ| 6 8. We have:

|
⋃
α∈Λ

C(α)| ≥ min(λ(η, |Λ|), 2η), (4)

where λ() is defined in Theorem 1.
Proof: We first discuss the case where the pairwise x-

distances between any two threads in Λ is 2. For ease of

discussion, we call such a set as step-2 set. It is straightforward
that a step-2 set is a special case of an exclusive set. We will
first show that the cardinality of a step-2 set is at most 8. Let
α and β be two threads in Λ. Then for each thread γ from
the set Λ\{α, β}, the set formed by α, β, and γ covers 1 and
only 1 thread (Lemma 4). Since the total number of threads
covered by both α and β is 6 (Lemma 3), the cardinality of
the set Λ\{α, β} is at most 6. Thus, the cardinality of Λ is at
most 8. Suppose a step-2 set Λ covers n threads and |Λ| = k.
Given another thread α that is 2 in x-distance to each thread
in Λ, the set Λ′ formed by Λ ∪ {α} is also step-2 set. The
thread α covers

(
η+1

2

)
threads. However, the number of threads

covered by Λ′ is smaller than n +
(
η+1

2

)
since some threads

covered by α is also covered by threads in Λ. Given a thread
β in Λ, α and β cover 6 six same threads (Lemma 3). Given
two threads β and γ in Λ, the set {α, β, γ} covers 1 same
thread (Lemma 4). Thus, when the size of Λ increase by 1,
the number of its covered threads increases

(
η+1

2

)
+
(
k
2

)
− 6k.

Thus, Equation 4 holds true for step-2 sets.
If Λ is not a step-2 set, let α and β be two threads satisfying

X (α, β) > 2. Then, the number of threads covered by both
α and β is 0 other than 6 in the case where X (α, β) = 2
(Lemma 3). Compared to a step-2 set of the same size as Λ,
the total number of threads covered will be more.

Now we can prove Theorem 1:
Case 1, λ(η, 8) > 2η: The function Λ(η, i) increases

monotonically with i. Let i be the smallest value that satisfies
λ(η, i) ≥ 2η . From Lemma 5, we know that a size-i exclusive
set is enough to cover all the 2η threads.

Case 2, λ(η, 8) < 2η: The size-8 exclusive set covers
λ(η, 8) threads. There are at most 2η−λ(η, 8) covered threads.

V. kNN QUERY PROCESSING

Straightforwardly, we can send all the data objects to the
GPU and use it to compute a kNN answer. However, since
transferring data to the GPU is expensive, processing kNN
queries solely on the GPU is often not the best. We take
advantages of both the GPU and the CPU. Specifically, we
first use the GPU to compute a candidate result set. Then, we
use the CPU to refine the candidate set and obtain the query
answer. We present our kNN algorithm in Algorithm 4. The
algorithm consists of three steps: (1) identify the cells that
may contain the kNN answer and send their message lists to
the GPU for message cleaning (Lines 1 to 4); (2) construct a
candidate result set (Lines 5 to 9); and (3) refine the candidate
set to obtain a final answer (Lines 10).

A. Selecting Candidate Objects

We first select the candidate cells, i.e., the cells that may
contain the query answer. This can be done by computing
the distance between the query object and cells, which will
be detailed later in this subsection. For the selected cells, we
send their message lists to the GPU for message cleaning.

Transferring message lists. Data transfer between the CPU
and the GPU is relatively slow compared with message pro-
cessing. To save time, we use a pipelined strategy, i.e., let the



GPU process and receive messages simultaneously. We group
the message lists into several sets. When the first set arrives,
the GPU starts to process the message lists immediately. In the
meantime, it keeps receiving more message lists transferred
from the CPU. The splitting procedure is straightforward and
is omitted in Algorithm 4.

Algorithm 4: kNN Query Processing
input : query q = 〈k, e, d〉, ρ
output: result set Rq

1 cq ← getCell(q.e), L ← {cq ∪ getNeighbors({cq})}
2 C ← Message Cleaning(L)
3 while |C| < ρ · q.k do
4 C = C ∪ Message Cleaning(neighbors(L) \ L)

5 V ← getVertices(C)
6 M← getObjects(C)
7 GPU SDist ≪|V|≫ (V)
8 Rcan ← GPU First k ≪|M|≫ (M)
9 U ← GPU Unresolved ≪|V|≫ (V)

10 Rq ← Refine kNN(Rcan,U)

Selecting candidate cells. We compute a set of candidate
cells that contain more than ρ ·k objects. We adopt an iterative
procedure to select the cells. Here, k is the query parameter
and ρ > 1 is a system parameter for workload balancing
between the GPU and the CPU. Let cell cq be the cell of
the query object, the CPU first sends cq and its neighboring
cells to the GPU. A cell ci is a neighbor of another cell cj if
there exists an edge with a source vertex in ci and a destination
vertex in cj . Let C be the set of objects found in the processed
cells. We repeatedly send the neighboring cells of previously
selected cells to the GPU until |C| > ρ · k (Lines 3 to 4).

Parameter ρ > 1 balances the workloads of the CPU and
the GPU. A larger value of ρ will increase the GPU workload
and reduce the CPU workload. We will discuss the impact of
ρ on the query performance in Section VI-B2 and perform
empirical studies in Section VII.

B. Constructing a Candidate Result Set

In this step, we construct candidate results. Current kNN
algorithms for road networks usually rely on Dijkstra’s al-
gorithm to compute the shortest path distance between the
query and the data objects [4]. However, Dijkstra’s algorithm
computes the shortest path distance by iterating over the
vertices, where each iteration is dependent on the result of
the previous iteration. It is difficult to run Dijkstra’s algorithm
in parallel. We propose a different approach to achieve parallel
processing so as to make full use of the GPU. Our algorithm
consists of two steps: (1) compute the candidate objects; and
(2) construct the unresolved vertex set.

Computing candidate objects. We first compute the short-
est path distance from q to each vertex in the candidate
cells, denoted as V . We adapt the Bell-ford algorithm for
parallel processing on the GPU, as summarized in Algorithm 5
GPU SDist(). The algorithm computes the shortest distance to
each vertex by repeatedly relaxing all the edges connected to
vertices in V for |V| times. Since we have stored the edges
with the same destination vertex together in the G-Grid, we
can relax edges with different destination vertices in parallel

without any conflicts in data accessing. We use |V| threads
and assign each thread with a vertex v (Line 3). In each
iteration, each thread relaxes the edges stored in v, i.e., v.Av ,
and updates the shortest path distance of v (Lines 5 to 6).

We compute the distance of q to data objects in C based
on the shortest path distances of the vertices. Given a data
object o, its distance from q is dist(q, o) = D[m.e.vs]+m.d,
where m is the latest message from o. Then, the candidate
set is computed as the k data objects with smaller distances
from q than any other data objects. In Algorithm 4, function
GPU First k represents the above procedure (Line 8).

Algorithm 5: GPU SDist

input : a set vertices V
output: an array D where each vertex v is associated with its shortest

distance to q
1 repeat |V| times
2 for i← 0 to δv − 1 do
3 v ← V[thread id]
4 e← v.Ae[i]
5 if D[v] > D[e.vs] + e.w then
6 D[v] = D[e.vs] + e.w

7 sync threads()

Computing unresolved vertices. The candidate set is built
based on the nearby cells of the cell containing the query
object. Since we have only sent the most promising cells to
the GPU, there may exist some data objects outside of the
candidate set but are actually the result objects. There also may
exist shorter paths through vertices outside of the computed
cells. Thus, in addition to the candidate set, we use the GPU
to compute a set of unresolved vertices.

Definition 3 (unresolved vertex): Assume a query q and a
set S of cells. Let the kth smallest distance of objects in
S from q be l. An unresolved vertex v satisfies that (1)
dist(q, v) < l; and (2) v is on the edge of S. The un-
resolved range of v is the set of locations in G satisfying
dist(v, ·) < l − dist(q, v).

Here, a vertex v is said to be on the edge of a set S of
cells if there exists an edge of which the source vertex is
v and the destination vertex is outside of S. We represent
the construction of the unresolved vertices set as the function
GPU Unresolved in Algorithm 4 (Line 9). We will compute
the final result from the candidate set and objects within
unresolved ranges of the unresolved vertices set.

Algorithm 6: Refine kNN

input : a candidate set Rcan, unresolved vertices set U
output: kNN result R

1 l← k length(Rcan)
2 for each v in U parallel do
3 Rv ← dijkstra search(l −Dist(q, v))

4 Rq ← first k(k,
⋃
v∈U Rv ∪Rcan);

C. Final Result Refinement
We copy the candidate set and unresolved set to the CPU

and refine them to get the final result. This is done by calling
the function Refine kNN in Algorithm 4 (Line 10). Specif-
ically, we perform Dijkstra’s algorithm on each unresolved



vertex to find the data objects within their unresolved range.
Since the Dijkstra’s algorithm can be performed for each
vertex independently, we use different threads in the CPU
to run the algorithm in parallel. Then, we combine the data
objects in unresolved range with the candidate set. We return
the k data objects with the minimum distances from q as the
result. This procedure is summarized in Algorithm 6.

VI. COST ANALYSIS

A. Space Cost
Given a road network graph G, we store each vertex and

edge as a data entry in the graph grid. Although there may
be empty entries in the vertex/edge arrays since these arrays
have a fixed length, the ratio of empty entries is very low. This
is because we map the vertices evenly among cells. Further,
we create “virtual vertices” for those vertices with too many
edges. The overall space cost of graph grid is O(|V |+ |E|).

We can safely delete the messages before tnow − t∆.
Assuming that on average, each object sends f∆ number of
location updates during t∆, the space cost of message lists is
O(f∆|O|). In the object table, we store each object as a data
entry. Thus, the space cost of the object table is O(|O|).

B. Query Cost
1) Message Cleaning: The cost of message cleaning con-

sists of two parts: (1) the cost of transferring data from the
CPU to the GPU; and (2) the cost of message cleaning in the
GPU. These costs are determined by the number of messages
to be processed. Given a kNN query and a parameter ρ, the
message cleaning aims to compute a candidate set of ρk data
objects. We can stop sending more messages to the GPU once
the number of candidate objects reaches ρk. Assuming that
the average number of messages sent by each object during
time t∆ is f∆, the number of messages transferred to the GPU
is bounded by O(f∆ρk).

Message processing in GPU is performed in parallel. We
assign each thread a size-δb bucket of messages. To avoid the
synchronization issue, we further group every 2η threads into a
bundle. Each bundle works independently from the others and
runs GPU X Shuffle on the threads within it for 2η iterations.
During each iteration, each thread processes η + 1 messages
and updates the intermediate table T at most µ(η) times. Since
η and µ(η) are small constants, the overall cost for message
cleaning is O(δb). To compute the final result R from T ,
we assign each object in T with a thread, which processes
the candidate messages of the object in T . Since we have
f∆ρk
δb2η

candidate messages for each object, the query cost is
O( 1

η (log f∆ρk− log δb)). As a result, the computation cost of
message processing in GPU is O(δb + 1

η (log f∆ρk− log δb)).
Since data transfer and message processing are performed

simultaneously, the overall message cleaning cost is O(f∆ρk).
2) Computation of Query Result: To compute the candidate

set, the GPU assigns each vertex in C with a thread. Here, C
represents the set of cells sent for candidate computation and
|C| is proportional to ρk/δc. To run GPU SDist, each thread
performs O(|C|δcδv) iterations to update the shortest path

TABLE II: Statistics of road networks

Dataset Region |V | |E|
USA Full USA 23,974,347 58,333,344
LKS Great Lakes 2,758,119 6,885,658
CAL California and Nevada 1,890,815 4,657,742
FLA Florida 1,070,376 2,712,798
COL Colorado 435,666 1,057,066
NY New York City 264,346 733,846

distance of the assigned vertex. To find the k nearest objects,
the algorithm uses a parallel sorting algorithm that runs in
O(log ρk) time. To find the set of unresolved vertices, each
thread performs a boolean check that runs in O(1) time. Thus,
the overall time for computing the candidate set is O(ρkδv).

In the refinement step, each unresolved range is searched
using Dijkstra’s algorithm. Assume the objects are uniformly
distributed on the road network. Since we run the searching
in unresolved ranges in parallel, we only need to consider
the time cost of searching the unresolved range of a single
vertex. The average search radius is O(m

√
k
π −

√
ρk
2 ), where

m is the expected ratio of the longest distance to the shortest
distance between a query and its kth nearest neighbor. There-
fore, the computational complexity of the dijkstra search

procedure is O((m−√ρ)
√
k log((m−√ρ)

√
k)).

VII. EXPERIMENTAL STUDY

We evaluate the efficiency of the proposed algorithms
empirically in this section.

A. Settings
We implement all algorithms using C++ and CUDA 9.0.

We conduct the experiments using a computer with 64-bit
Windows operating system, 16GB memory, and two 2.5 GHz
Intel Xeon E5 CPUs (12 physical cores in total). We use an
Nvidia Quadro P2000 GPU with 1024 cores and 5GB memory.

We used six real-world road networks1 which are commonly
used in related studies [8], [9]. Statistics of the datasets are
summarized in Table II. Following a previous study [7], we
generate the moving objects using MOTO [10], which is an
open-sourced generator for moving object traces. To generate
the queries, we randomly generate the query locations and
assume a fixed time interval between the queries.

We vary the query parameter k, the number of data objects
|O|, and the update frequency of the data objects f . By default,
we set k = 16, |O| = 104, and f = 1 (update per second).

We report the average running time of kNN queries. The
running time is an amortized time (Tu + Tq)/nq , where Tu
is the time for index updating, Tq is the time for query
processing, and nq is the number of queries.

B. Baseline Algorithms
We compare our G-Grid-based algorithm, denoted as G-

Grid, with two state-of-the-art methods, V-Tree [4] and
ROAD [9]. We extend ROAD to support moving objects
following the V-tree paper. In addition, we implement a GPU
based version of the V-Tree algorithm, denoted as V-Tree (G).

1http://www.dis.uniroma1.it/challenge9/download.shtml



Specifically, we store the core index structure of V-Tree in the
GPU memory. Upon receiving a message, we send it to the
GPU immediately. We cache the messages in the GPU until
the number of cached messages reaches 32, i.e., the size of a
GPU warp. Then, we process the cached messages in parallel.

C. Results

1) Tuning System Parameters: We first find the optimal
parameter values for G-Grid.
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Fig. 4: Optimal Parameters

Optimizing δc and δv. In the road network datasets, the
ratios of the number of edges over the number of vertices are
all below 3. Thus, we set δv = 2. We use integer (4 bytes)
variables for the vertex and edge components. An edge costs
12 bytes, and a vertex costs 32 bytes. To fit a cell in the L1
cache of the CPU (128 bytes), we set δc as 3. Thus, a cell
costs 32× 3 + 8 = 104 bytes. We pad each cell with 24 extra
bytes to ensure its starting address to be a multiple of 128.

If a vertex has more than δv edges, we first store the edges
into the 24 extra bytes of its cell. When the extra bytes are
filled, we create virtual vertices as described in Section III-A.

Optimizing δb. We empirically find the optimal value of
δb. We vary the value of δb from 4 to 256 on the datasets
of NY, FLA, and US. Fig. 4a shows the result. At start, the
running time drops as δb increases. This is because a larger
δb leads to a smaller number of threads and bundles. The size
of the intermediate results decreases, which accelerates the
GPU Collect process. However, when δb becomes too large,
the running time increases with δb. This is because the number
of threads becomes too small to make full use of the parallel
capability of the GPU. Based on this set of experiments, we
use δb = 128 by default in the following studies.

Optimizing 2η . Parameter 2η determines the number of
threads in each bundle. Intuitively, the more threads in a
bundle, the more we can benefit from the GPU X Shuffle

process. However, when the bundle sizes exceeds the GPU
warp size, a bundle will contain threads from different warps.
Such threads need to be synchronized by calling an expensive
function sync threads, the cost of which may outweigh the
benefits. As Fig. 4b shows, having more than 32 threads in
a bundle leads to worse query performance (32 is the warp
size). Thus, we use 2η = 32 by default.

Optimizing ρ. Parameter ρ balances the workloads of the
CPU and the GPU. The optimal value of ρ differs in different
hardware platforms. Fig. 4c shows the query running time as
we vary the value of ρ from 1.4 to 3. We find that ρ = 1.8
suits our hardware settings the best.
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2) Comparing with Baseline Algorithms: Next, we compare
the query performance of the different algorithms.

Varying datasets. We compare G-Grid with the baseline
algorithms on the six datasets where k is fixed at 16. Figure 5
shows the query running time. For the G-Grid-based algo-
rithm, we report two different times: the average response time
of a query, denoted as G-Grid (L), and the amortized time of
a query, denoted as G-Grid. Specifically, G-Grid (L) sums up
the processing time of every query and reports the average.
G-Grid reports the overall response time for processing all
the queries divided by the number of queries. Our system can
process multiple queries in parallel. Thus, the overall response
time is smaller than summing up the response time for each
query, i.e., G-Grid is smaller than G-Grid (L). Meanwhile, both
G-Grid and G-Grid (L) outperform all the baseline algorithms
by orders of magnitude. We omit the result of V-Tree (G) on
the USA dataset since its space cost is beyond the capacity
of our GPU. We further compare the index sizes of G-Grid
with those of V-Tree in Fig. 6. In the figure, G-Grid (CPU)
shows the full size of our G-Grid index including the graph
grid, the object table, and the message lists; G-Grid (GPU)
shows the size of a copy of the graph grid stored in the GPU
to streamline the computation; and G-Grid (Total) sums up
G-Grid (CPU) and Grid (GPU). The sizes of our full G-Grid
indices are significantly smaller than those of the indexes of
the more time efficient baseline V-tree. This is because the
main component of our index, the graph grid, only stores the
original data in a way to facilitate efficient query processing,
while the V-tree stores a large amount of precomputed data
such as pairwise distances between vertices in a V-tree cell (a
subgraph of the network graph [4]) for query processing.

Varying k. We vary k from 8 to 256 and show the results on
the USA and NY datasets. We report the running time of each
algorithm in Fig. 7. It shows that G-Grid again outperforms
the baseline algorithms consistently. The running time of G-
Grid and V-Tree increases with k, since the search range in
the two algorithms increase with k. When k > 64, V-tree (G)



becomes more efficient than V-Tree on the NY dataset since
it can distribute workloads among parallel threads. ROAD
is most costly but its performance is less impacted when k
changes. This is because query processing only contributes
a small proportion of the running time of ROAD. Most of
the workloads in ROAD come from frequent updates of the
index structure. We omit the results on the other datasets for
conciseness as they show similar patterns.
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Fig. 7: Varying k

Varying |O|. We vary |O| from 102 to 106. As shown in
Fig. 8, the four running time of the four algorithms increase
as the number of data objects increases. G-Grid increases by
a factor of less than 10, which is slower than the baseline
algorithms which increase by a factor of around 100.

Varying f . We vary the average object location update
frequency f . As shown in Fig. 9, the running time of G-Grid
are less impacted by f . In contract, the running time of the
baseline algorithms increase rapidly with the update frequency.
This confirms the effectiveness of our proposed “lazy update”
strategy. By caching the object updates, we successfully reduce
the update costs and increase the query efficiency.
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3) Scalability of G-Grid: We further study the scalability
of G-Grid over road networks with different sizes.

Running time and throughput. We compare the running
time and the throughput of G-Grid on the six real road net-
works with the same number of randomly distributed moving
objects. From Fig. 10 (a) and (b), we can see that the running
time increases with the size of the road networks. This is
because as the network size increases, the objects have larger
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Fig. 10: Scalability of G-Grid
distances from each other, which leads to a larger search space
for distance computations and nearest neighbor finding. We
also record the throughput, i.e., number of queries processed
by G-Grid per second. As expected, the throughput decreases
as the size of road network increases.

DRAM-GPU transfer costs. Figure 10 shows the size of
the data transferred between the CPU and the GPU and the
time for the data transfer, for a query where k = 8, 32, and
128. The size of the data transferred increases with k, since
the number of message lists and kNN candidates to be sent to
the GPU increases with k. The size of the data transferred also
increases with the network size. This is because, on a larger
road network, the algorithm needs to check more cells to find
the kNN candidates. However, the size of the data transferred
becomes relatively stable when the networks are sufficiently
large (e.g., larger than 107), as there are more cells found to
be with empty message lists. As for the data transfer time,
it has a similar change pattern to that of the size of the data
transferred, since the data transfer time is proportional to the
size of the data transferred in most cases.

VIII. RELATED WORK

KNN queries have been studied in a variety of con-
texts [11], [12]. We review two most relevant groups of kNN
studies: kNN queries in road networks and kNN queries using
GPUs. We also review studies on moving object indexing.

KNN queries in road networks. Kolahdouzan and Sha-
habi [13] precompute Voronoi cells over a road network. Then,
a kNN query can be processed by first identifying the Voronoi
cell within which the query object locates and then expanding
the search towards the neighboring Voronoi cells. Huang et
al. [14] propose a model for the abstract functionality of a
road network NN search. They propose an algorithm similar
to Dijkstra’s algorithm to compute the distance between the
data objects to help identify the NNs online. Papadias et
al. [15] utilize the Euclidean distance to facilitate NN search
in road networks. A few other studies [16], [17], [18] consider
monitoring a kNN query continuously as the objects are
moving. Their focus is to reduce the costs of handling the
updates relevant to the same query rather than reducing the
update costs for all the data objects as in our study.



KNN queries using GPUs. GPUs have been used to accel-
erate kNN query processing [19], [20]. A fine-tuned linear
algebra library CUBLAS [21] is utilized in these studies to
compute the distances between objects. Another GPU-based
kNN algorithm [22] speeds up kNN computation for a set
of queries using shared computation. This algorithm does not
focus on handling object location updates.

Indexing and querying moving objects. More recently, the
cover field tree [23] is proposed to speed up moving object
indexing by controlling the size of each cells in the index.
Sidlauskas et al. [24] point out that for update-intensive work-
loads such as indexing moving objects, grid-based structures
outperforms tree-based structures. Darius et al. [7] propose the
PGrid, which is a main memory index that exploits parallelism
of modern multi-core processors to support both long-running
queries and rapid updates in Euclidean space. Their work
differs from ours in three aspects. First, they focus on kNN
queries in Euclidean space rather than road networks. Second,
they improve the update efficiency through accelerating every
update but not delaying or skipping any updates. Third, they
achieve parallel processing using a multi-core CPU while
we use the GPU, which allows much more threads but also
brings challenges in concurrency control. Ward et al. [25] use
GPUs for indexing moving objects but consider a moving
join query instead of the kNN query. Shen et al. [4] study
kNN queries over moving data objects in road networks. They
propose the V-Tree that represents a road network as a tree
structure. Each leaf node in the tree represents a subgraph of
the road network. They precompute the inner- and inter-node
distances to accelerate query processing. They update the V-
Tree index whenever an object location changes. As a result,
their algorithm may repeatedly update the same index entry.
Shang et al. [26] study the best point detour query in road
networks that finds the point detour with the minimum detour
cost. Here, a point detour is a temporary deviation from a
user’s current path which allows the user to visit an additional
data point.

IX. CONCLUSION

We studied the kNN query in road networks with data
location updates. We presented an indexing method that avoids
unnecessary index updates via a lazy update strategy. In
particular, we proposed a highly parallel algorithm for efficient
handling of cached updates, which enables the lazy update
strategy. We further proposed a GPU-CPU collaborating al-
gorithm for kNN query processing based on our indexing
method. The experimental results show that the proposed
algorithm outperforms the state-of-the-art algorithms in both
query time and index size.
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