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Abstract—The high training costs of graph neural networks
(GNNs) have limited their applicability on large graphs, e.g.,
graphs with hundreds of millions of vertices which have become
common in the era of big data. A few recent studies propose
distributed GNN systems. However, these systems may generate
high communication costs due to the extensive message passing
among graph vertices stored on different machines. To address
such limitations, in the paper, 1) we propose a distributed
GNN computation system named EC-Graph for CPU clusters,
which drastically reduces the communication costs among the
machines by message compression; 2) we design a requesting-end
compensation method for the embeddings to mitigate the errors
induced by compression in the forward propagation and a Bit-
Tuner to adaptively balance the model accuracy and message size;
and 3) we propose a responding-end compensation approach for
the embedding gradients in the backward propagation. Extensive
experiments over large real-world datasets show that EC-Graph
outperforms state-of-the-art distributed GNN systems on two
CPU clusters of different sizes.

Index Terms—distributed systems, distributed graph neural
networks, compression, error compensation

I. INTRODUCTION

Graphs have strong representation power for relationships
among entities in the real world. They have been used to
represent web page networks, molecular structures, social
networks, etc. Many data analysis algorithms for graphs have
been proposed, including traditional iterative graph (IG) algo-
rithms and more recently graph neural networks (GNNs) [1]–
[3]. While GNNs have shown high accuracy for predictive
tasks (e.g., vertex label or link prediction), they also have
expensive computation costs. Meanwhile, graphs in the era of
big data have become extremely large. For example, a product
co-purchasing network (OGBN-Products) has over 2 million
vertices and over 100 million edges, while a citation network
(OGBN-Papers100M) has over 100 million vertices and over
3.2 billion edges 1. Such large graphs bring significant chal-
lenges to the computation efficiency of GNNs.

A. Challenges in Distributed Graph Neural Network Training

Distributed processing is a natural direction to scale GNNs.
To show the challenges in distributed GNN computation (i.e.,
training), we first brief the general idea of GNN training.
As shown in Fig. 1, consider an attributed graph G =
⟨V, E ,XV ,XE⟩, where V and E are the sets of vertices and

1https://ogb.stanford.edu/docs/nodeprop/

edges, while XV and XE represent the feature (i.e, attribute)
sets of the vertices and edges, respectively. A GNN aims to
generate an embedding (i.e., a vector) to represent a vertex,
an edge, or a graph through aggregating the graph structure
and/or feature information. The computed embeddings can be
used in downstream tasks, e.g., vertex classification as shown
in Fig. 1b. Fig. 1c shows the general processing flow of a 3-
layer GNN for a vertex classification task. Consider vertex v1
from Fig. 1a. Since this is a 3-layer GNN, the vertices that
contribute to the embedding of v1 are the 3-hop neighbors
of v1, i.e., v2, v3, and v5. Each of these vertices vi fetches
the embeddings (feature vectors in the initial layer) of its in-
neighbors in each layer. These embeddings, together with the
embedding of vi, go through a GNN computation to produce
the updated embedding of vi which becomes the input of the
next GNN layer. After three layers, the final embedding of v1,
h
(3,t)
v1 , is obtained, which is used with the ground truth label y1

(Fig. 1b) to compute a training loss (e.g., via a fully connected
layer). The gradient is computed and propagated backward to
update the GNN parameters. This process is repeated for T
times or until the GNN parameters converge. Different variants
of GNNs have been proposed. They differ in their aggregation
functions (agg()) to aggregate embeddings of the neighboring
vertices and their combination functions (com()) to combine
the aggregated embedding with the embedding of target vertex
v, as summarized by the equation:

h(l,t)
v = σ(com(h(l−1,t)

v , aggu∈N (v)(h
(l−1,t)
u ))⊙W (l−1,t)) (1)

Here, W (l−1,t) denotes the GNN parameters (weights) to
be learned, and σ() denotes an activation function, e.g., ReLU.

Existing distributed IG frameworks [4]–[7] cannot process
GNN computations efficiently. This is because each vertex in
GNN needs to propagate a high dimensional vector (i.e., its
embedding) to its neighbors in each GNN layer, while only a
scalar is propagated in traditional IG tasks. More importantly,
GNN has the forward and backward propagations in model
training which are not inherently supported by IG frameworks.
Distributed machine learning (ML) frameworks support model
training. However, they mostly use Parameter Server (PS)
[8]–[14] or All-Reduce [15], [16] frameworks, which assume
independent training samples. The samples in GNNs, i.e.,
the vertices, are not independent. Thus, such distributed ML
frameworks are not applicable directly.
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Fig. 1: An Example of a 3-Layer GNN

Recently, several studies [17], [18], [20] built distributed
GNN systems on top of ML frameworks. These systems
locally cache L-hop (L corresponds to the number of lay-
ers) neighboring vertices to enforce the independence among
physical computing nodes, leading to redundant computations.
Besides, it is difficult for these systems to support GNN
training on large graphs in the full-batch mode (which is
preferred due to a faster convergence), because a huge memory
space will be required for caching L-hop neighbors. The
problem becomes even worse when processing graphs with
small diameters, where L-hop neighbors may cover a large
portion of the graphs.

Other emerging GNN systems such as DistGNN [35] follow
distributed graph processing procedures to bypass the data
independence requirement, which is the path that we take
in this paper. One of the biggest challenges in building
such systems is that all vertices need to send (receive) high
dimensional embeddings to (from) their neighboring vertices
in each GNN layer. Many of such neighbors may reside across
computation nodes which need to be transferred, generating
high communication costs. Consider a 3-layer GNN model
(128-dimensional embeddings for each layer) to be trained
on a graph with 10 million vertices and 1 billion edges.
Assume that each vertex has 10% neighbors residing in other
computation nodes, and each dimension is represented by a
4-byte floating point number. The GNN model can produce
roughly 50 GB (109 × 0.1 × 128 × 4/10243) embeddings in
each layer, and 250 GB (three forward propagations and two
backward propagations) messages need to be communicated in
each epoch. Such computation and communication costs pose
significant challenges to the distributed system design.

B. Our Proposal

To address these challenges, we propose a distributed GNN
system named EC-Graph for CPU clusters. Further, we focus
on designing optimizations to reduce distributed commu-
nication costs. Optimizations for standalone GNN training
algorithms are orthogonal to our work. EC-Graph follows

the framework of distributed iterative graph computation sys-
tems and reduces the communication costs by aggressive
compression methods. As a result, errors may be resulted
from the compression. To mitigate these errors, we propose
error compensation algorithms for both vertex embeddings
and embedding gradients. For the vertex embeddings, we
maintain extra approximate embeddings and adaptively select
the embeddings to be sent based on the compression errors. We
also tune the number of bits used in compression based on the
communication costs allowed in each computation iteration.
For the embedding gradients, we maintain the errors generated
by compression in the current iteration and correct these in the
next iteration. To the best of our knowledge, EC-Graph is the
first effort to combine the error-compensated mechanism with
graph-structured GNN analysis tasks. Our main contributions
are summarized as follows.

• We design a novel error-compensated distributed GNN
system named EC-Graph that takes a distributed iterative
graph processing approach to avoid the high computa-
tion and memory costs. EC-Graph integrates aggressive
lossy compression for the messages of embeddings and
embedding gradients to reduce communication costs.

• We present an algorithm named ReqEC-FP to compen-
sate for the compression errors at the requesting-end. For
faster convergence, a Bit-Tuner is designed to adaptively
adjust the compression rate.

• We propose another algorithm named ResEC-BP to com-
pensate for the errors generated by the last iteration at the
responding-end. We further show an error upper bound
for the proposed compensation methods.

• Extensive experiments on real datasets show that EC-
Graph outperforms state-of-the-art distributed GNN sys-
tems consistently. We achieve a performance improve-
ment in terms of DistGNN and DistDGL (state-of-the-art
sampling and non-sampling based systems) by 1.10 ∼
1.48× and 1.35 ∼ 6.28× on real datasets.

II. RELATED WORK

We review distributed iterative graph and machine learning
frameworks, GNN computation systems, model compression
and error compensation techniques.

A. Distributed Frameworks for Traditional Iterative Tasks

Traditional distributed large graph iterative computation
systems are mostly developed from Pregel [4], which proposes
a vertex-centric programming model. PowerGraph [5] presents
a new Gather-Apply-Scatter (GAS) computation model on
graphs, together with a vertex-cut partition strategy. Power-
Switch [6] proposes a graph parallel mode with an adaptive
switching between synchronous and asynchronous to achieve
optimal convergence. These systems are designed for graph
analysis tasks such as PageRank, shortest-path finding and
connected component computation. They are unsuitable for
complex GNN computation and efficient high-dimensional
vector propagation.



Many iterative frameworks have been designed for ML
tasks. For example, Parameter Server [10] and Petuum [11] are
the early general-purpose distributed ML frameworks. FlexPS
[8] can dynamically adjust the degree of parallelism to adapt
to the changing-workload in different stages of training. All-
Reduce [15] can better leverage the bandwidth between GPUs.
However, this framework is inapplicable to the heterogeneous
cluster. Moreover, TUX2 [23] transforms ML tasks into a bi-
partite graph representation, where the edges connect samples
and parameters, which processes MLs with a distributed graph
system. In summary, these systems for MLs focus on gradient
aggregations and model updates, where no communication is
needed among samples. As a result, they do not adapt to
distributed GNN tasks.

B. Graph Neural Network Systems

Scarselli et al. [37] propose the first GNN model togeth-
er with a training algorithm. Many studies have followed
and presented new training algorithms and model variants.
However, performance optimization for GNN systems is still
in its infancy. GNN toolkits, such as PyG [24], DGL [25]
and CogDL [26], have implemented many GNN variants to
simplify the building of customized GNN models. However,
these toolkits optimize the performance only for a single
machine. Other systems, such as PaGraph [28], ROC [21],
PCGCN [29], CAGNET [22] and NeuGraph [27], are GPU-
based systems, which mainly focus on cache policies and
parallel acceleration on GPUs.

A few distributed systems for GNNs on CPU-cluster have
been proposed, which are divided into two categories: Machine
Learning Computation centered (ML-centered) and Graph
Computation centered (Graph-centered) frameworks. In ML-
centered based GNN systems, each vertex caches L-hop neigh-
bors to the machine that manages the vertex. Each machine
thus stores all the required information for GNN computation.
Take a vertex v1 as an example which has an in-neighbor
v2 (v1 ← v2 for convenience). There are two more vertices
v3 and v4 that are relevant, where v2 ← v3, and v3 ← v4.
For a 3-layer GNN (i.e., L = 3), v1 will cache the feature
vectors of v1, v2, v3 and v4, as well as the adjacency lists of
v1, v2 and v3. In comparison, the Graph-centered based GNN
systems only cache the feature vector and adjacency list of v1
on the machine that manages v1, and the machine of v1 only
needs to communicate with the machine that manages v2 for its
embedding during training. Through a 3-layer aggregation, the
information of v4 can be eventually propagated and aggregated
to v1. Although the ML-centered systems do not require
communication among the workers, they need to cache a large
amount of data and have many redundant computations on
every machine in the cluster.

EC-Graph is a Graph-centered based GNN system that
runs on CPU clusters. Existing GNN systems based on CPUs
include PSGraph [17], AGL [20], AliGraph [18], DistDGL
[19] and DistGNN [35]. The first three systems are ML-
centered, while DistDGL and DistGNN are Graph-centered
like EC-Graph. DistGNN’s main optimization is a delayed

TABLE I: Notations

Symbol Explanation
Xi The feature vector of the ith vertex
Wl The neural network parameters of the lth layer
|V | The number of vertices
|E| The number of edges
g The average degree of each vertex
d The average dimension size of each vertex
T The number of iterations
L The number of layers

h(l,t)
v The representation of v at the lth layer in the tth iteration
dl The output dimension size of the lth layer

grmt The average number of remote 1-hop neighbors of each vertex

remote aggregation to reduce the communication traffic in
each iteration, i.e., only a portion of the vertices request for
neighboring vertices embedding vectors from another machine
in each iteration. As a result, DistGNN has a slower conver-
gence. EC-Graph does not have this issue, since all vertices
will communicate for neighbors’ embeddings in each iteration.

C. Compression and Error Compensation for MLs

Compression techniques can be categorized into lossless
and lossy methods. The latter is usually more efficient at
the expense of accuracy, which has been applied to ML
tasks. SketchML [30] utilizes sketch to compress gradients
and adopts a MinMaxSketch strategy to reduce the com-
pression error. Top-k sparsification [32] keeps the largest k
gradient values, while 1-Bit quantization [31] simplifies the
gradient values into -1,+1. DoubleSqueeze [33] compresses
the gradients transferred from the workers to the servers and
those from the servers to the workers, and compensates in the
next iteration. Error-Compensation (EC) in ML is designed
for communicating compressed gradients ∇F and parameters
W between workers and servers. In comparison, EC-Graph
compresses and compensates for the vertex messages (embed-
dings H in forward propagation and gradients of embeddings
G in backward propagation) among workers, which has not
been considered in ML since the training samples in ML are
considered independent. It is non-trivial to design an effective
EC method for distributed GNN systems. To begin with,
the compression errors flow between GNN layers following
the graph topology, which needs a careful algorithm design
to track and compensate for. Further, error compensation
for forward and backward propagations needs to be done
differently. Neither of these can be addressed by existing ML
error compensation methods directly.

III. EC-GRAPH SYSTEM

We describe the overall framework and detail an imple-
mentation of the graph convolutional network (GCN) on EC-
Graph. We conclude this section by comparing EC-Graph (a
typical Graph-centered system) to ML-centered systems from
the memory, computation and communication costs. Table I
summarizes our notations.

A. EC-Graph Overview

EC-Graph is a distributed GNN system that takes a graph
dataset G and a GNN (e.g., GCN) as the input, trains (i.e.,
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Fig. 2: System Architectures

optimizes the model parameters) the GNN over G, and outputs
the trained network.

EC-Graph modules. Fig. 2a shows the architecture of EC-
Graph which follows the general design of distributed iterative
graph processing systems. For comparison, we also show the
general architecture of existing ML-centered distributed GNN
systems, which is detailed in Section III-C.

EC-Graph is based on a CPU cluster with two types of
computation nodes: workers and servers. The workers are
responsible for the data-parallel computation to obtain the
gradients. They can communicate with each other to fetch em-
beddings and embedding gradients of the vertices in forward
and backward propagations, respectively. The servers maintain
and update the GNN parameters to be trained. A physical
node can run any number of workers and servers. The workers
communicate with the servers by two operators pull and push
for obtaining parameters and sending gradients, respectively.
The workers fetch embeddings and embedding gradients by
operator get.

There are two modules managing the overall computation
process: Graph Engine (GE) and the Parameter Manager
(PM). GE manages the vertex communication, partition and
storage of graphs, and other optimizations on graphs. PM is
responsible for the partition and storage of GNN parameters.
In fact, both of these two modules are logical layers distributed
among various workers.

EC-Graph model training process. Given an input graph
G and a GNN to be trained, GE calls the partition module
to divide G into n parts (the number of workers). After
partitioning, each worker accesses NFS (a general distributed
file system) for their local subgraphs, including the subgraph
topology and the vertex feature of the subgraphs. Then,
PM divides GNN parameters onto m servers according to
some user-defined partition strategy. By default, we implement
a built-in range-based partition method, which divides the
weights W and biases B of each layer evenly. The workers then
start the model training process by computing both forward
and backward propagations. During this process, the workers
request PM for relevant weights and biases. Then, PM locates
and pulls the required parameters from servers, and returns

the parameters to the requesting workers. The 1-hop NAC
(Neighbor Access Controller) component in each worker is
in charge of accessing the 1-hop neighbors from the (same
or other) workers. Specifically, the local neighboring vertices
(residing in the same workers) are obtained from the shared
memory, while neighboring vertices on other workers are
fetched by the GE.

A well-designed partition strategy can help reduce the
communication costs, and we have implemented the Hash and
METIS partitioning algorithms in EC-Graph. Some streaming
methods [38] can partition graphs with low space and time
costs, which will be left in future work. Although METIS aims
to minimize the across-node communication during iterative
computation, it still does not avoid the communication costs
triggered by message passing inherent to GNN training. To
address this issue, EC-Graph has a compression module and a
error-compensated module to compress and compensate the
vertex messages respectively, when GE fetches the remote
neighboring vertices.

We additionally implement two basic optimizations which
are common in the existing GNN systems. First, we cache
the first-hop remote neighbors in each worker, leading to
less communication without inducing extra costs. Second,
we adopt the same message-aggregating optimization with
DGL (i.e., if in-dimension > out-dimension, EC-Graph will
compute the X · W first, and then perform aggregation
A ·XW ).

B. Graph Convolutional Network on EC-Graph

We show how GCN is implemented on EC-Graph for its
two key steps, i.e., forward and backward propagations.

Forward Propagation (FP). In each layer of GCN, a ver-
tex v updates its embedding based on its 1-hop neighbors’
embeddings from the last layer. Some of the 1-hop neighbors
may reside in a different physical node, which are requested
by the get operator through network communications. These
embeddings, together with the embeddings of the 1-hop neigh-
bors stored with v, form a matrix which is used to compute
the new embedding of v for the current layer. Eq. 2 and Eq. 3
formalize this process, where A = D− 1

2 (A + I)D− 1
2 is a



normalized adjacency matrix, D is the degree matrix and I
is the identity matrix. Note that the initial embeddings are set
as the feature vectors of the vertices, i.e., H0 = XV .

Zl = ATH l−1W l−1 (2)

H l = σ(Zl) (3)

Algorithm 1 shows the process of FP on EC-Graph. We
train the model for T iterations. For each iteration, each vertex
needs to propagate and aggregate L times, assuming a GCN of
L layers. For computing layer l, the workers pull the weights
W l−1 from the servers (line 4). If l is not the last layer, the
vertex embeddings need to be propagated and aggregated for
the next layer as follows. Each worker first accesses other
workers and its local memory to obtain embeddings of all 1-
hop neighbors for the vertices managed by the worker (lines 5
and 6). Then, the workers concatenate the local and remote
embeddings into a new matrix H l−1

cat (line 7). Finally, we
aggregate neighbors for each vertex by a dot-product with
the adjacency matrix AT , and transform the embeddings by
another dot-product with the model weight matrix W l−1 (lines
9 and 11). If l is the last layer of the current iteration, the
embedding of each vertex is fed into the loss function to
compute the gradients (lines 12 and 13).

Algorithm 1: Forward Propagation on EC-Graph
Input: Feature Matrix Xv , Adjacency Matrix A

1 Worker n = 1, 2, ..., N in Parallel:
2 for t from 1 to T do
3 for l from 1 to L do
4 W l−1 = pull(l-1)
5 locNeiEmbs = getLocEmbs(locNodeSet,l − 1)
6 rmtNeiEmbs = getRmtEmbs(rmtNodeSet,l − 1)
7 H l−1

cat = concatenate(locNeiEmbs, rmtNeiEmbs)
8 if l != L then
9 H l = σ(ATH l−1

cat W
l−1)

10 else
11 H l = ATH l−1

cat W
l−1

12 score = softmax(H l)
13 L = etropyloss(score, label)

Backward Propagation (BP). The equations of BP for
GCN have been derived in CAGNET [22], which are listed
as Eqs. 4 to 6. Here, Gl represents the partial derivative of
loss L over the output embeddings of the lth layer Zl. Through
the chain rule, we can obtain the gradients for the weights in
the previous layer, i.e., Y l−1. Note that Gl−1 is flowed from
Gl following the adjacency matrix A.

GL =
∂L
∂ZL

= ∇HLL ⊙ σ′(ZL) (4)

Gl−1 =
∂L

∂Zl−1
= AGl(W l)T ⊙ σ′(Zl−1) (5)

Y l−1 = (H l−1)TAGl (6)

Since the vertices only communicate with their 1-hop neigh-
bors in each layer, the dataflow from 2-hop to L-hop cannot
be obtained locally. We compute gradients gradually in BP
by sending Gl in each layer, as summarized in Algorithm 2.
The gradients of the weights WL−1 are the first to be
computed (lines 7, 13 and 14), which is done locally on
each worker. From layers L − 1 to 1, each worker needs to
request Gl+1 to compute Gl (lines 9 to 12). After computing
Gl, the gradients Y l−1 can be obtained (lines 13 and 14).
Finally, each worker sends the gradients to the servers based
on the parameter addressing maps (line 15). The servers
receive gradients from each worker, add them up to obtain
the global gradients, and update the weights with the global
gradients. EC-Graph can also support other GNN models as
long as they exchange the same types of information (i.e.,
embeddings and embedding gradients of neighboring vertices)
and have the same communication topologies. For example,
Graph Attention Networks (GAT) fetches embeddings from in-
neighbors in FP and embedding gradients from out-neighbors
in BP. Other computations such as embedding aggregation and
weight updates are computed locally on each machine, which
do not interfere with the processing paradigm of EC-Graph
and hence can be integrated into EC-Graph straightforwardly.

Algorithm 2: Backward Propagation on EC-Graph
Input: Weights W , Adjacency Matrix A, embeddings Z

1 Server m = 1, 2, ...,M in Parallel:
2 grads+ = gradi
3 AdamOptimizer(W , grads)

4 Worker n = 1, 2, ..., N in Parallel:
5 for l from L to 1 do
6 if l==L then
7 Gl = ∇HlL ⊙ σ′(Zl)

8 else
9 locNeiG=getLocG(locNodeSet,l + 1)

10 rmtNeiG=getRmtG(rmtNodeSet,l + 1)
11 Gl+1

cat =concatenate(locNeiG, rmtNeiG)
12 Gl = AGl+1

cat (W
l+1)T ⊙ σ′(Zl)

13 Y l−1 = (H l−1)TAGl

14 grad.append(Y l−1)

15 push(grad)

C. Architecture Comparison and Analysis

We compare EC-Graph with ML-centered frameworks in
Fig. 2b. Systems based on such frameworks (e.g., AliGraph
[18]) store the neural network models and all the information
of an input graph in the parameter servers. They usually take
a mini-batch training mode with a sampling approach, to suit
the processing capability of each individual worker. At start,
each worker sends out a sampling request to obtain mini-
batches consisting of target vertices. It then samples L-hop
neighbors of each target vertex assigned to the server, and
pulls all the needed information (features and adjacency lists)
of the L-hop neighbors. Local training is done on the worker
with the pulled information for the target vertices. The workers
do not need to communicate with each other for updating the



TABLE II: Algorithm Costs

ML-centered framework EC-Graph
Memory Space O(gL · d) O(g · d)

Computation Cost O(gL−1 · d2) O(L · d2)
Communication Cost O(gL · d0) O(

T ·L·grmt·d
32/B

)

vertex embeddings, at the expense of extra memory space and
computation costs for the L-hop neighbors.

Since the neighboring vertices are only sampled, such
systems suffer in model training accuracy, and they are difficult
to run in the full-batch mode without sampling. In contrast,
our system shows favorable scalability, and we run in a full-
batch without sampling, which has been shown to converge
faster with higher accuracy [21], [22]. Further, EC-Graph also
supports a sampling-based training mode.

We further analyze the communication, computation and
memory space costs of ML-centered frameworks and EC-
Graph, assuming a full-batch mode without sampling. In terms
of memory space, ML-centered framework based systems need
to cache L-hop neighbors, and hence each vertex generates a
neighbor set of size (1 + g1 + · · · + gL) = 1−gL+1

1−g ≈ gL,
where gi denotes the average degree of the ith layer. The
memory space for caching the feature vector of each vertex is
gL · d, where d denotes the average dimension size. The cost
for caching the adjacency list is gL−1 · g = gL as the Lth-hop
neighbors do not generate new embeddings. The total memory
space cost is then O(gL · d). In comparison, EC-Graph only
needs O(g ·d) space for each target vertex. For simplicity, we
do not take the same cost into account, e.g., the weights.

The computation complexity of a matrix dot-product com-
putation of M|V |×d⊙Md×d is O(|V |·d2). As a result, the ML-

centered framework needs O(gL−1 · d2) time for each target
vertex in each iteration, while EC-Graph takes O(L ·d2) time.

For an ML-centered framework, all L-hop information
needs to be pulled from the parameter servers, and the com-
munication cost is O(gL · d0), where d0 is the dimensionality
of the initial feature vectors. This process is performed once in
the preparation phase. Our EC-Graph needs a communication
cost of O(T · L · grmt · d), where grmt denotes the average
number of remote 1-hop neighbors of each vertex. In the next
section, we will present a compression technique to further
reduce the communication cost of EC-Graph by a factor of
32/B, i.e., to O(T ·L·grmt·d

32/B ), where B is the number of bits for
compressing. We summarize the algorithm costs in Table II.

IV. ERROR-COMPENSATED COMPRESSION FOR FORWARD
AND BACKWARD PROPAGATIONS

We first outline our compression technique that comes
with error-compensation to mitigate its impact on model
accuracy. Then, we detail the requesting-end compensated
model (ReqEC-FP) for FP, together with a Selector and a
Bit-Tuner. Finally, we detail the responding-end compensated
model (ResEC-BP) for BP, and we provide a theoretical error
bound.

A. Compression and Error Compensation

EC-Graph requires information exchanging among different
physical nodes which incurs communication costs. Consider an
L-layer GNN, the intermediate embeddings H0 to HL−1 need
to be exchanged in FP, while the intermediate gradient results
GL to G2 need to be exchanged in BP. The vertex information
exchanged is the main communication bottleneck, because a
large number of vector messages may need to be transmitted
along the graph topology. To reduce the communication costs,
we take a compression approach. Since the vertex information
exchanged in FP and BP is in the form of a matrix, we
compress each matrix by mapping its elements into NB

buckets. We then send the bucket values and the encoded
matrix to the requesting workers.

Fig. 3 shows an example of the compression process for FP.
Compression for BP is similar and hence omitted. Consider a
worker wi with two local vertices v3 and v4 which needs to
fetch neighbor embeddings h5 and h6 from another worker
wj . Worker wj (i.e., the responding end) compresses h5

and h6 before sending them to wi. In this example, we set
the number of bits B for the compressed embedding as 2.
This means that we partition the data domain (i.e., [0, 1])
for each embedding dimension into 2B = 4 buckets. This
enables sending the bucket ID (B bits) for each embedding
dimension instead of the coordinate (a 32-bit floating point
number) in that dimension, reducing the communication cost
per dimension from 32 to B=2. Each bucket has its lower and
upper bounds (e.g., 0.6 and 1 for bucket 2), the value of which
is set to the average value of both bounds (0.8 for bucket 3).

As the figure shows, the compression is first done with a
map stage which maps an embedding coordinate to the bucket
that contains the value, e.g., 0.7 is mapped to bucket 2. Since
this example uses 8-dimensional embeddings, we obtain two
16-bit mapped values, which are concatenated into a 32-bit
unsigned integer (3,388,157,968). This compressed embedding
matrix is sent together with the average values of each bucket
({0.2, 0.5, 0.8, 0.0}) to worker wi (i.e., the requesting end).
Worker wi then decompresses the embeddings h5 and h6

by reading the bucket ID for each dimension and using the
average value of the corresponding bucket as the coordinate
of the dimension.

In general, given d-dimensional embeddings where each
dimension takes b bits and B bits to represent a bucket
ID, this compression technique reduces the message size per
embedding from (d · b) to (d · B + 2Bb). Note that the cost
(2Bb) to send the bucket averages will be amortized with more
embeddings to be compressed and sent.

Our design provides optimization opportunities to balance
the communication costs and the model accuracy by tuning
the number of bits B.

B. Compensation in Forward Propagation (ReqEC-FP)

We first compensate for the errors in H at the requesting
end in FP. We also design an adaptive bit-tuner to make a
trade-off between efficiency and accuracy.
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Fig. 3: Compression Example

Selector for Foward Compensation. To compensate for
the errors in the embeddings sent from a responding end
worker wj to a requesting end worker wi, we send not
only the compressed embeddings (Cbits(H)), but also the
non-compressed embeddings periodically to wi in every Ttr

iterations (defined as a trend-group), where Ttr is a system
parameter. On the responding end wj , we further record the
changing rate for each embedding coordinate in a matrix
M l,t

cr = (H l,t+Ttr−H l,t)/Ttr, which is sent together with the
non-compressed embeddings H to the requesting end wi. The
messages sent by each responding worker at the tth iteration
are defined as:

M =

{
Cbits(H), 0 ≤ t mod Ttr < Ttr − 1
H,Mcr, t mod Ttr = Ttr − 1

Then, at each iteration t, a worker has three embedding
matrices, Ĥ l,t

pdt, Ĥ l,t
cps, and Ĥ l,t

avg , which are calculated by
Eqs. 7 to 9 below. Here, Ĥ l,t

pdt is an estimation based on
the last non-compressed embeddings H l,⌊t/Ttr⌋·Ttr sent from
the responding ends together with the changing ratio matrix
Mcr, where ⌊·⌋ represents the “floor” function. Ĥ l,t

cps is the
compressed embeddings as computed following the procedure
described in Section IV-A; and Ĥ l,t

avg is the average of Ĥ l,t
pdt

and Ĥ l,t
cps.

Ĥ l,t
pdt = H l,⌊t/Ttr⌋·Ttr +M l

cr × (t mod Ttr + 1) (7)

Ĥ l,t
cps = Cbits(H) (8)

Ĥ l,t
avg = (Ĥ l,t

pdt + Ĥ l,t
cps)/2 (9)

To further reduce the communication costs, we maintain
these three approximate representations on the responding
ends, and only send the most accurate approximation upon
each request. In particular, we compute the L1 distances S
between the an original embedding and its three approximate
embeddings by Eq. 10, and we send the approximate embed-
ding with the smallest L1 distance to the requesting end, i.e.,
Ĥv[k] with k = argmin Sv.

Sv =
dl∑
i=1

|ĥl,t
(v,i) − hl,t

(v,i)| (10)

Continue with the example in Fig. 3, we illustrate the
error compensation process in Fig. 4, where S is a matrix

with Nrmt rows and three columns, and Nrmt denotes the
number of neighbors in nodes. Each row corresponds to
a vertex embedding to be sent to a requesting end, and
each column represents the L1 distance of an approximate
representation. The predicted approximation of h5 and the
average approximation of h6 yield the smallest L1 distances,
respectively.

Note that we do not need to send the compressed values
for v5 because such embeddings can be predicted by the re-
questing workers. These non-sent embedding messages offset
part of the communication costs induced by sending accurate
embeddings at the last iteration of every trend-group.

We send the ID of each of these three approximations which
only takes 2-bits, i.e., 00, 01 and 10 for compressed, predicted,
and average approximations, respectively. We also send the
corresponding compressed embedding when compressed or
average approximations are selected. When a predicted em-
bedding is selected, we can compute the embedding directly
on the requesting end. There are three kinds of granularity
for the approximate representations, including element-wise,
vertex-wise and matrix-wise schemas. We use vertex-wise
approximations, which yields the best balance between the
message size and the accuracy empirically.
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Fig. 4: Error Compensation in Forward Propagation

Adaptive Bit-Tuner. Further, we design an adaptive bit
tuner to compression bits B. Our idea is to monitor the
proportion Ppred of predicted approximate embeddings se-
lected by the responders. When more predicted approximate
embeddings are selected, there are smaller communication
costs because such embeddings do not need to be sent, i.e.,
Ppred ∝ 1

Comm . This is also an indicator to suggest that the
compressed embeddings are too lossy, where a larger number
of bits B should be used in the forthcoming iterations. On
the other hand, if the predicted approximate embeddings are
rarely selected, we may use fewer bits for compression to
reduce the communication costs in the forthcoming iterations.
Empirically, we increase B when the predicted approximate
embeddings are selected for more than 60% of the vertices,
while we decrease B when the ratio drops below 40%.



Algorithm 3: ReqEC-FP in Requesting Workers
Input: Layer ID l, Remote node set rmtNodeSet, Number of

bits B, Trend parameter Ttr , Iteration number t
Output: Remote neighbor embeddings rmtNeiEmbs

// get embeddings from other workers
1 rm = getEmbsRpcClient (l, rmtNodeSet, B, Ttr , t)
2 if (t+ 1) % Ttr == 0 then
3 H l,[(t+1)/Ttr ], M l

cr = rm.parse()
4 Hrmt = H l,[(t+1)/Ttr ]

5 else
6 Ĥ l,t

cps, SltArr = rm.decompress()
7 Ĥ l,t

pdt = H l,[t/Ttr ]·Ttr +M l
cr × (t%Ttr + 1)

8 Ĥ l,t
avg = (Ĥ l,t

pdt + Ĥ l,t
cps)/2

9 H=[Ĥ l,t
cps, Ĥ l,t

pdt, Ĥ
l,t
avg]

10 for v in rmtNodeSet do
11 sid=SltArr[v]
12 Hrmt[v] = H[sid][v]

13 if l == L then
14 proportion = rm.getProportion()
15 if proportion > 0.6 then
16 B = (B < 16) ? B = B ∗ 2 : B

17 if proportion < 0.4 then
18 B = (B > 1) ? B = B/2 : B

19 return Hrmt

Algorithm 3 and Algorithm 4 summarize the embedding
requesting and responding process with compression and error
compensation in FP. To start the process, a worker sends a
request to get the embeddings of the neighboring vertices
(line 1, Algorithm 3). A responding worker receives a request
and computes the reply message rm. There are two cases.
The first is to return non-compressed embeddings and a
matrix of changing rates (lines 2 to 6, Algorithm 4); the
second is to return compressed embeddings and supporting
information for embedding selection and bit-tuning (lines 8
to 16, Algorithm 4). Next, the requesting workers parse rm ,
which also has two different cases (lines 2 to 18, Algorithm 3).
The first is to parse the matrix of changing rates and the non-
compressed embeddings (lines 3 and 4). The second is to parse
and decompress the embeddings from rm (lines 6 to 9). Then,
the embeddings of the neighboring vertices are reconstructed
based on the selection indicators (lines 10 to 12). We also
update B and choose its value from {1, 2, 4, 8, 16}. When
the proportion of predicted embeddings is larger than 0.6 and
B < 16, we double B for less aggressive compression. When
the proportion is smaller than 0.4 and B > 1, we reduce B
by half to reduce the communication costs. The proportion of
predicted embeddings on a responding worker is computed on
the choosing results of all the requesting workers. Note that
different numbers of bits may be used for responding workers.

C. Compensation in Backward Propagation (ResEC-BP)

During BP, we use a similar compression for the embedding
gradients of L − 1 layers (G2, . . . ,GL). We compensate for
the compression errors in BP in this subsection. At the tth

Algorithm 4: ReqEC-FP in Responding Workers
Input: Layer ID l, Remote node set rmtNodeSet, Number of

bits B, Trend parameter Ttr , Iteration number t
Result: Integrating Messages rm

// respond embeddings to other workers
1 ReplyMessage rm
2 if (t+ 1) % Ttr == 0 then
3 Hres = H l[rmtNodeSet]
4 M l

cr = (Hres −H l
last)/Ttr

5 H l
last = H l

res

6 rm.buildMessage(Hres, Mcr)

7 else
8 H l,t = H[rmtNodeSet]
9 Ĥ l,t

cps = compress(H l,t)

10 Ĥ l,t
pdt = H l,[t/Ttr ]·Ttr +M l

cr × (t%Ttr + 1)

11 Ĥ l,t
avg = (Ĥ l,t

pdt + Ĥ l,t
cps)/2

12 S = [
∑

|Ĥl,t
cps−H l,t|,

∑
|Ĥ l,t

pdt−H l,t|,
∑

|Ĥ l,t
avg−H l,t|]

13 SltArr = argmin(ST , axis = 1)
// filter out the predicted embedding

14 Ĥ l,t
cps = filter(Ĥ l,t

cps, SltArr)
// coutX couts the elements valued 1

15 proportion = coutX(SltArr, value=1) / SltArr.size()
16 rm.buildMessage(SltArr, Ĥl,t

cps, proportion)

17 return rm

iteration, compressed embeddings are responded in each layer.
At the (t+1)-th iteration, before the embeddings are sent to
the requesting workers in each layer, the compression error of
the tth iteration is added to the embeddings of the (t+1)-th
iteration, which are compressed and sent afterwards.

The left half of Fig. 5 shows the message accessing of
the lth layer at the tth iteration, while the right half shows
that of the lth layer at the (t+1)-th iteration. There are four
steps of embedding requests in the two iterations. In the first
step, v3 and v4 in the ith worker request for the embeddings
of v5 and v6 of the lth layer. The second step computes
the errors δl,t5 and δl,t6 generated by compression based on
Eq. 11, which will be transferred to an error compensator.
The third step occurs in the (t+1)-th iteration when v3 and v4
request for the neighboring vertices’ embeddings again. The
responding worker j prepares the embeddings of v5 and v6,
which are sent to the error compensator. In the fourth step,
the errors generated in the tth iteration are compensated into
the current embeddings. The compensated embeddings will
be compressed and sent to the requesting worker i, which are
calculated by Eq. 12.

iteration t, layer iteration t+1, layer

,
+

,

[
,

+
,
]

. , .

compensation

Fig. 5: ResEC-BP Overview

δl,tv = g(l,t)
v + δl,t−1

v − Cbit[g
(l,t)
v + δl,t−1

v ] (11)



M l,t+1
v = Cbit[g

l,t+1
v + δl,tv ] (12)

We summarize the process of ResEC-BP in Algorithm 5
and Algorithm 6. In Algorithm 5, the requesting workers
request for the neighboring vertices’ embedding gradients
(line 1), decompress (line 2) and return them (line 3). When
the responding workers receive the requests, they start to
build the replying message rm. As shown in Algorithm 6,
first, they identify their embedding gradients needed by the
requesting workers based on rmtNodeSet (line 2), which will
be compensated by the error generated in the last iteration (line
3). Before compressing the compensated embedding gradients,
we should compute the maximum and minimum values since
they will not be normalized into a unit ball (lines 4 and 5).
After building the replying messages, we compute the new
error of this iteration, and return the messages to the requesting
workers (lines 9 to 11).

Algorithm 5: ResEC-BP in Requesting Workers
Input: Layer ID l, Remote node set rmtNodeSet, Number

of bits B
Output: Remote neighbor embeddings Grmt

1 message = getRmtG(l,rmtNodeSet,B)
2 Grmt = message.decompress()
3 return Grmt

Algorithm 6: ResEC-BP in Responding Workers
Input: Layer ID l, Remote node set rmtNodeSet, Number

of bits B
Output: Responded message rm

1 ReplyMessage rm
2 Gl,t = G[rmtNodeSet]

3 Gl,t
cpt = Gl,t + δl,t−1

4 max, min = getMaxMin(Gl,t
cpt)

5 M l,t = compress(Gl,t
cpt,max,min)

6 rm.buildMessage(M l,t)
7 δl,t = Gl,t −M l,t

8 return rm

To analyze the theoretical error bounds of ResEC-BP, Eq. 13
and Eq. 14 are given to constrain the upper bounds of the
compression errors and the embedding gradients, respectively,
where || · || denotes the L2 norm for matrices, and α is a
constant. These two inequalities are common conditions for
analyzing the compression error of iterative tasks [32]. Based
on them, we give an error bound for each layer l at the tth
iteration.

E||x− C(x)||2 ≤ α2||x||2 (13)

E||Gt,l||2 ≤ G2 (14)

Theorem 1: ResEC-BP bounds the expected compres-
sion error of the embedding gradients G by E||δt,l||2 ≤
(1+α)L−l·G2

1−α2(1+ 1
ρ )

(0 < α <
√
2
2 ).

Proof:

E||δt,l||2 = E||Gt,l + δt−1,l − C[Gt,l + δt−1,l]||2

≤ α2E||Gt,l + δt−1,l||2

≤ α2E||Gt,l||2 + α2E||δt−1,l||2

+ α2(ρ · E||Gt,l||2 +
1

ρ
· E||δt−1,l||2), (ρ > 0)

≤ α2(1 + ρ)E||Gt,l||2 + α2(1 +
1

ρ
)(α2(1 + ρ)

· E||Gt−1,l||2 + α2(1 +
1

ρ
)E||δt−2,l||2)

=

t∑
s=1

α2(t−s+1) · (1 + 1

ρ
)t−s · (1 + ρ)

· (1 + α)L−l · E||Gs,L||2

≤
α2(1− [α2(1 + 1

ρ
)]t)

1− α2(1 + 1
ρ
)

· (1 + ρ) · (1 + α)L−l ·G2

≤ ·(1 + α)L−l ·G2

1− α2(1 + 1
ρ
)
(α <

1√
1 + ρ

, ρ > 1)

(15)

System implementation. We implement EC-Graph in C++
and Python. To reuse the linear algebraic operator optimiza-
tion, we use PyTorch as the computation backend, which is
responsible for the graph neural network model definition
and the computation of FP and BP. We use gRPC2 as the
communication framework with the protobuf 3 serialization
technique. Data transformation between C++ and Python is
implemented using Pybind11 4, which supports definitions of
C++ objects and uses memory address for data transformation
and conversion. EC-Graph is open-sourced5.

V. EVALUATION

We compare EC-Graph with state-of-the-art distributed GN-
N systems by their performance on real datasets.

A. Experimental Setup

GNN models and datasets. We use Graph Convolutional
Networks (GCN) [1] to evaluate the performance of EC-
Graph, which is a typical GNN model. GCN is designed
for semi-supervised learning and uses a localized first-order
approximation of spectral graph convolutions for aggregating
the information of neighboring vertices. Moreover, Graph-
SAGE [2] is a general inductive framework and aggregates the
neighboring information in the spatial domain. Since GCN and
GraphSAGE enjoy similar performance improvements from
our optimizations, we only show the results of GCN for
conciseness. The number of layers in each GNN model ranges
from 2 to 4, and each layer contains a full-connected layer
and an activation function. We use Adam optimization, and
the same learning rates are used for both EC-Graph and all
baseline systems.

2https://github.com/grpc/grpc
3https://github.com/protocolbuffers/protobuf
4https://github.com/pybind/pybind11
5https://github.com/songzhen-neu/ecgraph



TABLE III: Datasets

Datasets #Vertex #Edges #Features #Classes Degree

Cora 2,708 10,556 1,433 7 3.90
Pubmed 19,717 88,654 500 3 4.50
Reddit 232,965 114,615,892 602 41 491.99
OGBN-Products 2,449,029 123,718,024 100 47 50.52
OGBN-Papers 111,059,956 3,231,371,744 128 172 29.10

We use five real public datasets from PyTorch Geometric
[24] and Open Graph Benchmark [36], which are commonly
used graph datasets. The datasets are split into train/val/test
subsets with sizes of 1,408/300/1,000, 12,816/1,971/4,930,
153,932/23,699/55,334, 196,615/39,323/2,213,091 and
1,207,179/125,265/214,338, respectively.

Environments and baselines. We use two CPU clusters.
The first cluster consists of 13 machines, each of which has 32
GB DRAM and an Intel(R) Xeon(R) 4-core CPU E3-1226 v3
@ 3.30 GHz. The second cluster consists of 6 machines, each
of which is equipped with 250 GB DRAM and an Intel(R)
Xeon(R) Silver 4110 CPU @ 2.10GHz with 32 cores. The
second cluster is used for the largest dataset OGBN-Papers
with billions of edges. The machines in each cluster are
connected with a Gigabit Ethernet.

We compare with PyG [24], DGL [25], AliGraph [18],
AGL [20], DistGNN [35] and DistDGL [19]. The first two
are the most commonly used GNN libraries, which are for
observing the distributed speedups. Others are distributed
GNN systems grouped into two categories for fair comparison:

• Sampling-based systems: AliGraph, AGL, and Dist-
DGL. AliGraph and AGL are the typical ML-centered
based GNN systems, both of which are sampling-based
GNN systems. DistDGL is a Graph-centered based sys-
tem and also follows a sampling-based training mode.
However, it adopts an online-sampling that chooses dif-
ferent neighbors for a vertex in each iteration.

• Non-sampling-based systems: DistGNN. It is a Graph-
centered based system with a full-batch scheme, which
reduces the communication traffic by the proposed de-
layed remote partial aggregation.

Since AGL [20] and DistGNN [35] are not open-sourced,
we implement them following their original proposals. For
AGL, its overall framework and main optimizations have been
implemented, including GraphFlat, Sub-Graph Vectorization,
and Graph Pruning. We ignore the time of disk I/O and graph
vectorization since it can be hidden in AGL [20] by pipelining.
For DistGNN, we implement its only distributed optimization
delayed remote partial aggregation on our system, which is
extended for an edge-cut partitioning. Other optimization trick-
s for single machines have been omitted for fair comparison
since they are not implemented on the other systems.

Training Mode. We use the full-batch (full-graph) mode for
training instead of mini-batch as this yields faster convergence
as shown in previous studies [21], [22]. The numbers of
layers, if unspecified, are set to 2, 2, 2, 3, and 3 for the
five datasets, while the hidden layer sizes are set to 16, 16,
16, 256, and 256 respectively. Six machines are used for test

except for scalability. We set Ttr = 10 empirically, which
achieves a satisfactory performance for all datasets. We set
the delayed round r = 5 for DistGNN following the original
paper [35]. AliGraph-FG enables the full graph mode for
AliGraph. No implementation details have been reported for
this mode. Empirically, we found that AliGraph can achieve
better performance when using the full graph mode. We use
AliGraph-FG in all comparisons. Finally, we run EC-Graph
on OGBN-Papers to evaluate the performance improvement
of EC-Graph on large-scale graphs.

B. Effectiveness of ReqEC-FP and ResEC-BP

We first study the convergence of ReqEC-FP and ResEC-
BP using different numbers of bits. Fig. 6 shows the results
of ReqEC-FP, where Non-cp denotes no compression, while
Cp-fp-i and ReqEC-FP-i denote using only compression and
using compression with our compensation algorithms with i
bits, respectively. We see that ReqEC-FP achieves a substantial
improvement on both accuracy and convergence speed. Take
Fig. 6c and Fig. 6h as an example. Given B < 8, the
compression method cannot converge to a high test accuracy
(Fig. 6c). In contrast, ReqEC-FP can reach a near-optimal
accuracy in this case (Fig. 6h). Given B = 8, the compression
method only yields its best accuracy 0.7567 at the 160th
epoch, while the accuracy of ReqEC-FP reaches its best both
earlier (at 100th epoch) and higher (0.9072). We find that the
graphs with a larger average degree are more susceptible to
the number of bits used in compression. For example, Reddit
(average degree 491.99) cannot converge to a satisfactory
accuracy even with an 8-bit compression, while Cora (average
degree 3.9) can use a 2-bit compression and converge to an
accuracy similar to that without compression. What’s more, the
compensation methods will oscillate, which is usually caused
by an uneven changing of embeddings.

Similarly, we evaluate ResEC-BP with different numbers of
bits. For conciseness, we only show a representative subset of
the results in Fig. 7, where Non-cp denotes no compression,
while Cp-bp-i and ResEC-BP-i denote using compression-
only and using ResEC-BP with i bits, respectively. Again, we
see that the error compensation helps achieve faster conver-
gence and higher accuracy.
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Fig. 7: Results of BP with Different Numbers of Bits

C. Convergence Time

We carry our an ablation experiment in Fig. 8. In the
figure, Cp-fp (Cp-bp) and ReqEC (ResEC) denote using
compression-only and using error compensation for the for-
ward (backward) propagation process. We use 2/4/1/2, 4/4/2/2,
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Fig. 6: Results of FP with Different Numbers of Bits

8/8/2/4, 16/8/2/2, and 8/8/4/4 bits on each dataset for Cp-
fp/Cp-bp/ReqEC/ResEC respectively such that the models can
converge to the near-optimal test accuracy. ReqEC-adapt is
the ReqEC-FP algorithm with the proposed adaptive bit tuner.
We see that the compression methods without compensation
perform even worse than the non-compression methods since
a large amount of compressing errors can greatly degrade
the convergence rate, leading to more iterations to converge.
Besides, EC-Graph shows a smaller speedup in graphs with
a large average degree such as Reddit, which are always
computationally intensive.
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Fig. 8: Ablation Study. Histograms indicate the speedup (y-
axis coordinates on the left) and lines represent the test
accuracy (y-axis coordinates on the right).

D. End-to-end Performance Comparison

First, we compare EC-Graph with the existing systems on
the average epoch time. We list the results of sampling and
non-sampling based methods separately in Table IV, with the
corresponding sampling ratios. EC-Graph does not outperform
the standalone GNN systems DGL and PyG on Cora and
Pubmed. This is because parameter updates and delays caused
by distributed processing dominate the overall training time
on these (relatively) small datasets. Similarly, other distributed
systems (even with sampling) also suffer on these two datasets
and are slower than DGL and PyG. For larger datasets, we
achieve 1.46 ∼ 1.57× speedups on Reddit and 1.81 ∼ 2.93×
speedups on Products over DGL in a full-batch and non-
sampling based training mode. DistDGL claims that they
have achieved a linear speedup over DGL, since they adopt

a high-speed commercial network device (100Gbps), where
communication would not be a bottleneck. Moreover, EC-
Graph outperforms DistGNN on almost all datasets including
both the overall convergence time and the average time per
epoch. DistGNN needs more convergence iterations since only
part of the vertices are updated by the lastest neighboring
messages.

Next, we compare the sampling-based EC-Graph (denoted
by EC-Graph-S) with the existing sampling-based distributed
GNN systems. EC-Graph-S also achieves the best performance
in this comparison. DistDGL adopts an online-sampling s-
trategy, which dominates the overall training time when the
computing and network bandwidth resources are constrained.
AGL is slow because the disk I/O and sub-graph vectorization
costs cannot be overlapped by graph computation under our
cluster environment. Besides, AGL is more sensitive to the
sampling ratio. For example, on Reddit, a 2-layer GNN under
a higher sampling ratio of (10,5) runs even longer than a 3-
layer GNN with a sampling ratio of (5,2,2). AliGraph-FG is
an ML-centered system, which can generate many redundant
computations. Further, we find that EC-Graph-S outperforms
AliGraph-FG more as the number of layers increases, which
shows the excellent layer-scalability of EC-Graph-S.

Fig. 9 reports the end-to-end times, which include prepro-
cessing times and model training times. The preprocessing
time of EC-Graph-S, AGL and AliGraph-FG consists of sam-
pling, logical partitioning, physical assignment and data pre-
processing, while that of DistDGL does not include sampling
time (DistDGL uses online-sampling). EC-Graph (including
EC-Graph-S) uses an equal-vertex partitioning strategy with
Hash, where the logical partition time is almost negligible
(e.g., 2.05 seconds on OGBN-Products with a single-threaded
program). The training time reported is the full convergence
time (time per epoch× the number of epochs till convergence).
We list the speedups of EC-Graph over the existing systems on
OGBN-Products for a clearer comparison. EC-Graph achieves
up to 1.68 ∼ 1.98×, 1.23 ∼ 1.48×, 1.06 ∼ 2.22×,
1.35 ∼ 1.72× and 4.34 ∼ 5.39× speedups over Non-cp,



TABLE IV: Training Time Per Epoch (s)

Method
Cora Pubmed Reddit OGBN-Products OGBN-Papers

2-layer 3-layer 4-layer 2-layer 3-layer 4-layer 2-layer 3-layer 4-layer 2-layer 3-layer 4-layer 2-layer 3-layer 4-layer

DGL 0.011 0.013 0.015 0.023 0.029 0.036 6.056 8.954 12.05 44.39 92.72 - - - -
PyG 0.012 0.018 0.023 0.066 0.105 0.144 - - - - - - - - -

DistGNN 0.034 0.047 0.074 0.049 0.091 0.109 4.218 6.744 8.584 26.68 33.12 50.84 - - -
EC-Graph 0.036 0.049 0.072 0.047 0.082 0.113 3.854 6.142 8.255 24.58 31.68 48.24 68.23 79.12 89.54
(sampling) (full) (20,10,5) (10,5,5,5) (full) (10,10,5) (5,5,5,1) (10,5) (5,2,2) (5,5,1,1) (20,5) (10,5,1) (10,5,2,2) (10,10) (10,10,10) (10,10,10,10)
DistDGL 0.260 0.245 0.288 0.390 0.424 0.678 3.416 3.640 4.375 5.055 7.720 16.47 - - -

AGL 0.490 0.198 0.222 1.088 0.348 0.429 7.684 4.589 8.346 35.35 47.67 - - - -
AliGraph-FG 0.061 0.278 0.546 0.232 0.514 0.683 2.417 3.124 4.864 1.987 7.153 24.35 - - -
EC-Graph-S 0.036 0.047 0.069 0.047 0.078 0.104 0.461 0.513 0.596 4.239 6.640 9.243 23.25 31.06 42.16

TABLE V: Test Accuracy

Cora Pubmed Reddit Product Paper

DGL 87.00% 86.59% 92.64% 86.23% -
PyG 87.02% 86.55% - - -

DistGNN 86.90% 86.41% 92.19% 85.70% -
EC-Graph 87.10% 86.59% 92.66% 86.18% 44.58%
DistDGL 86.70% 86.43% 92.57% 85.74% -

AGL 86.70% 85.89% 92.14% 85.01% -
AliGraph-FG 76.05% 83.59% 81.47% 82.02% -
EC-Graph-S 87.10% 86.59% 92.15% 85.06% 43.56 %

DistGNN, AliGraph-FG, DistDGL and AGL respectively. The
accuracy of each approach is shown in Table V).
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Fig. 9: End-to-end Performance Evaluation
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Fig. 10: Results on OGBN-Papers.

E. Scalability with the Number of Machines

We show the scalability of EC-Graph and EC-Graph-S
against the number of machines in Fig. 11 under two parti-

tioning strategies Hash and METIS. Both EC-Graph and EC-
Graph-S scale well with the number of machines. METIS has
lower running times because of its lower communication costs.
We did not use it as our default algorithm above because
it takes much time to partition on big graphs. Balancing
the partitioning time and the quality of partitions is another
important research problem beyond the scope of this paper.
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Fig. 11: Scalability of EC-Graph

VI. CONCLUSION

We propose a distributed system named EC-Graph for
efficient and scalable GNN computation on CPU clusters.
To reduce the computation and communication costs, we
take a lossy compression approach to compress the messages
communicated among the nodes in the cluster. We further
propose two compensation algorithms named ReqEC-FP and
ResEC-BP, respectively, which mitigate the degradation of
convergence caused by the lossy compression. Experimental
results on real graphs show EC-Graph outperforms DistGNN
and DistDGL (state-of-the-art sampling and non-sampling
based systems) by 1.10 ∼ 1.48× and 1.35 ∼ 6.28× on
real datasets. EC-Graph runs on CPU clusters at present. We
plan to extend EC-Graph to GPU clusters in future work.
Meanwhile, since GPUs have stronger computation power than
CPUs in general, we expect a GNN to train faster on each
machine in a GPU cluster. The communication costs may
become a stronger bottleneck, and our EC-Graph system will
play a significant role in reducing such costs.
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