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Abstract—Learned indices can leverage the high prediction
accuracy and efficiency of modern deep learning techniques.
They are capable of delivering better query performance than
traditional indices over one-dimensional data. Recent studies
demonstrate that we can also achieve query-efficient learned in-
dices for spatial data by partitioning and subsequently transform-
ing spatial data to one-dimensional values, after which existing
techniques can be applied. While enabling efficient querying,
building and rebuilding learned spatial indices efficiently remains
largely unaddressed. As the model training needed to learn a
spatial index is costly, efficient building and rebuilding of learned
spatial indices on large data sets is challenging if performed by
means of model training and retraining.

To advance the practicality of learned spatial indices, we
propose a system named ELSI that enables the efficient building
and rebuilding of a class of learned spatial indices that follow two
simple design principles. The core idea is to reduce the model
(re-)building times by engineering reduced training sets that
preserve key data distribution patterns. ELSI encompasses a suite
of methods for constructing small and distribution-preserving
training sets from input data sets. Further, given an input data
set, ELSI can adaptively select a method that produces a learned
index with high query efficiency. Experiments on real data sets
of 100+ million points show that ELSI can reduce the build times
of four different learned spatial indices consistently (by up to two
orders of magnitude) without jeopardizing query efficiency.

Index Terms—learned spatial indices, index building

I. INTRODUCTION

Geo-referenced, or spatial, data underpins a wide and ex-
panding range of location-based services, including digital
mapping, geo-fencing, location-based social networking, and
check-in applications. For example, OpenStreetMap has 7+
billion nodes and includes 9+ billion user-uploaded GPS
points [1]. Applications rely on the results of querying such
data, e.g., to find all Points of Interest (PoIs) in the region
of space covered by a user’s screen (a window query) or to
find all check-ins at places of interest to users (a point query).
Enabling this querying efficiently is important and challenging.

The objective of spatial indices [2]–[4] is to enable efficient
spatial query processing. Due to the query performance of
learned indices [5]–[7] on one-dimensional data, learned spa-
tial indices [8]–[11] have been developed that offer speedups
of up to orders of magnitude over existing spatial indices.

A learned (spatial) index can be conceptualized as a function
M from a domain of search keys to a range of storage
addresses (or partition IDs) where corresponding data is stored.
When given a search key p.key of a data point p, M(p.key)
approximates the storage address p.addr, where data related
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to p is stored. We search for p within range [M(p.key) +
errl,M(p.key)+ erru], where errl and erru represent error
bounds of M that bound the value of M(p.key)−p.addr for
all points indexed. These bounds are derived from the learning
process of M. A query is then answered by one or a few
function invocations. This approach substantially reduces the
query costs compared with using traditional indices such as
R-trees [12] that may incur recursive tree traversals.
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Fig. 1: An unbalanced learned spatial index created by skewed
insertions (red objects, best viewed in color).

While learned spatial indices target high query efficiency,
their performance can degrade quickly with data updates, espe-
cially when the updates cause the data distribution to change.
A straightforward solution is to frequently relearn the index
function M but frequent relearning is prohibitively expensive.
Learned spatial indices such as RSMI [8] and LISA [9] use
additional models and data pages, respectively, to support data
insertions without relearning the initially learned function M,
leading to increasingly sub-optimal query processing the more
points are inserted.

For example, Figure 1 shows an RSMI index with three
models M0,0, M1,0, and M1,1 learned initially on n check-in
where Mi,j denotes the jth model at the ith index layer. After
m skewed insertions (e.g., check-ins from a small region),
three more local models M2,0, M3,0, and M3,1 (in red) are
built by RSMI, causing an unbalanced structure and more
function invocations for some queries. For example, while
query Q1 only needs two model invocations (brown arrows),
query Q2 needs four (blue arrows).

To avoid degrading performance, index rebuilds are re-
quired, which is also done for one-dimensional indices in
database systems such as Oracle and SQL Server [13], [14].
However, (re)building a learned spatial index on a large data
set is challenging due to the high cost of learning function M.
LISA and RSMI report hours to learn indices on 50 to 100
million points [8], [9].
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Fig. 2: An overview of ELSI.

To enable efficient index (re)building, we propose a sys-
tem for efficient learning of spatial indices, name ELSI. As
Figure 2 shows, our core idea is that, given a spatial data
set D, we compute a much smaller set DS (e.g., |DS | is at
the million scale, while |D| is at billion scale) through ELSI,
which preserves the data distribution of D in DS . We then
learn an index model MDS

on DS and use it for querying D.
Comparing with learning a model MD on D, learning MDS

is much more efficient, since |DS | ≪ |D|, and the learned
model MDS

is expected to retain high query efficiency on D.
To ensure both build and query efficiency, ELSI offers

a method pool of six index building methods. Five are for
generating (or fetching a pre-generated) DS and the other just
uses the original (OG) data set D, which serves as a backup
option. ELSI can learn to choose the most suitable method for
D using a method selector, based on predicted index building
and query costs. To improve the overall rebuilding efficiency,
ELSI also predicts the times when rebuilding is needed.

Three of the six index building methods are adapted from
the literature: sampling (SP) [15], clustering (CL) [11], and
model reuse (MR) [16]. SP generates DS by systematic
sampling [17] over D. This is simple and efficient, but queries
in sparse regions, where no data points have been sampled for
model training, may experience poor performance. CL uses
cluster centroids from D as DS . Its limitation is the time
needed to build an index, since clustering a large data set is
expensive compared to sampling. MR generates synthetic data
sets and pre-trains index models on them. Then D is indexed
using a pre-trained model corresponding to the synthetic data
set that is the most similar to D according to their cumula-
tive distribution functions (CDFs). Technically, MR does not
generate DS after receiving D. Its query efficiency suffers if
none of the synthetic data sets are sufficiently similar to D.

Two of the six index building methods are proposed:
representative set (RS) and reinforcement learning (RL), to
obtain better approximations DS of D at reduced costs. RS
recursively partitions the data space and selects a point from
each final partition to represent the partitions and form DS .
Each space partition, i.e., a cell, is divided into 2d (d is the
data dimensionality) cells until each cell has at most a preset
number of points. For example, when d = 2, RS forms a
quadtree [18] partitioning. A point from each non-empty cell
is selected to form DS . This process is highly efficient, and
every data point in D is approximated by a close-by point (i.e.,
sharing the same cell). RL, on the other hand, partitions the
data space through a grid. Instead of selecting from points in
each grid cell, it assumes empty grid cells at start and learns
to add points to a subset of the cells to form a DS that best
approximates (the CDF of) D. We formulate the search process
of DS (i.e., a sequence of point adding/removal operations) as
a Markov decision process and apply reinforcement learning

for the search. RL offers a high-quality approximation of D
while the size of DS can be controlled by the grid resolution.

To summarize, the paper makes the following contributions:
(1) We propose ELSI – a system for efficient building and

update (in terms of rebuild) of learned spatial indices. ELSI
is the first such system that can support any learned spatial
indices that follow the map-and-sort index paradigm and the
predict-and-scan query paradigm.

(2) To index a data set D, ELSI learns to choose an
index building method that generates a small data set DS
resembling D and builds an index with DS for D, based on
a preference factor that balances index building cost and the
subsequent query processing efficiency. We propose two index
building methods RS and RL based on space partitioning and
reinforcement learning, both of which build learned indices of
high query performance efficiently.

(3) We integrate ELSI into four different learned spatial
indices and report on extensive experiments on both synthetic
and real data. ELSI improves the index build times by a factor
of 70 on average. The resulting indices retain high query
efficiency for both point and window query, only the kNN
query times differ by just 3%.

II. RELATED WORK

Traditional spatial indices. Traditional spatial indices use
data partitioning, space partitioning, or data mapping for
index building. Data partitioning-based indices organize the
data into partitions of nearby data objects. A typical example is
the R-trees [4], [12], [19]–[21] that form hierarchical structures
of data partitions, each partition being represented by its
minimum bounding rectangles (MBR). Space partitioning-
based indices partition the data space such that data objects in
each partition fit into an index unit.The quadtree [18] and grid
file [3] are typical examples. Data mapping-based indices map
multidimensional (spatial) objects to one-dimensional values
(e.g., using space-filling curves, SFC), which are then indexed
and queried via one-dimensional indices such as B-trees.

Most traditional indices are tree structured, and queries gen-
erally incur at least one tree traversal. Grid-structured indices
are a notable exception, but they struggle when choosing a
single grid resolution for skewed data. Tree traversals can be
expensive, especially for large non-memory resident data sets,
which motivates the study of learned spatial indices.

Learned spatial indices. Learned indices view an index
structure as an index function that maps from a domain of
search keys to a range of storage addresses of data objects.
Once an index function is learned, a query can be answered by
function invocation in constant time. RMI [5] implements this
idea on one-dimensional data. A number of follow-up studies
extend this idea to multidimensional data. Two key questions
must be considered when designing a learned spatial index:
(i) How are the spatial objects partitioned, such that each
partition matches the learning capacity of a machine learning
model used for index learning? (ii) How are the spatial objects
in each partition sorted for index learning?



The Z-order model index (ZM) [10] maps data points to their
Z-curve values for sorting and then uses RMI for indexing.
ML-Index [11] also uses RMI for indexing, but adopts the
iDistance technique [22] to map the data points to one-
dimensional values. RSMI [8] creates a hierarchy of space
partitions using SFCs. It then maps the data points to their
partition IDs (recursively), by which the points are sorted
for partitioning and index learning. LISA [9] partitions the
data space according to a grid and maps the data points to
one-dimensional values according to a weighted aggregation
of their coordinates. It learns a shard prediction function to
predict a shard ID for each point given its mapped value. The
points are sorted and indexed by their shard IDs in the form of
data pages. To process insertions, new points are added to data
pages by their predicted shared IDs, and new pages are created
as needed. This can lead to a skewed structure that impacts
the query efficiency. SPRIG [23] also partitions according to
a grid. It predicts the cell ID of a point with its coordinates
using learned bi-linear interpolation functions. Flood [24] and
Tsunami [25] partition a d-dimensional space using a (d−1)-
dimensional grid. The points in each partition are indexed by
their coordinates in the last dimension with RMI.

III. PRELIMINARIES

Given a set D of n points p1, p2, . . . , pn in d-dimensional
Euclidean space (d ∈ N+ and d ≥ 2), a learned spatial index
learns an index model M that predicts the storage address of a
point pi given its coordinates. Our aim is a system that enables
efficient (re)building of learned spatial indices. The problem
that the system aims to solve is defined as:

Definition 1 (Problem definition). Given a data set D, we aim
to compute a set DS where |DS | ≪ |D|, and DS preserves
the distribution of D, such that an index model MDS

can be
learned on DS efficiently, and MDS

can be used as model
M to query D with little sacrifice in query efficiency.

System applicability conditions. We do not propose a new
learned spatial index but instead propose a versatile system
named ELSI that can be integrated into existing learned spatial
indices and thus enable efficient (re)building for these. To use
with ELSI, a learned spatial index must satisfy:

(1) Map-and-sort index paradigm: Points in D are mapped
to a one-dimensional space and stored based on the sorted
order in the mapped space. The index model M learns this
storage order. This condition enables sampling in the mapped
space to form DS , as well as point ordering in the mapped
space after DS is obtained.

(2) Predict-and-scan query paradigm: A point query q
(which is the basis for more complex queries such as window
queries) on D is processed by an index model invocation
M(q) to predict the storage address of q, followed by a
scan over the addresses in [M(q) − errl,M(q) + erru].
This condition guarantees query correctness (for point queries)
when there are prediction errors.

Data set similarity measurement. A core capability of
ELSI is to quantify the similarity between DS and D. For this

purpose, we use the cumulative distribution functions (CDF)
of the search keys of the data sets. This is because the data
points are sorted and stored in a certain order. An index
model effectively learns a mapping from the key values used
for sorting to the sorted ranks of the points. This mapping
corresponds to the CDF of the key values. For example,
ZM [10] sort the points by Z-values of the points.

Let K(DS) and K(D) be the sets of key values of DS
and D, and let cdfK(DS)(·) and cdfK(D)(·) be their CDFs.
Following Liu et al. [16], the similarity between the key value
distributions of DS and D is defined as follows.
Definition 2 (Similarity between the key value distributions
of two data sets). Given DS and D, the similarity between
the distributions of their key values is 1 minus the maximum
distance between the CDFs of K(DS) and K(D):

sim(DS ,D) = 1− sup
x∈R
|cdfK(DS)(x)− cdfK(D)(x)| (1)

Here, supx∈R |cdfK(DS)(x) − cdfK(D)(x)| is the maximum
distance between the two CDFs.

For succinctness, we call sim(DS ,D) the similarity and
dist(DS ,D) = 1− sim(DS ,D) the dissimilarity between DS
and D hereafter as long as the context is clear. This similarity
metric is based on the Kolmogorov–Smirnov (KS) test [26],
which is a non-parametric test that returns the maximum
distance between the empirical CDFs of two data sets.

Computing dist(DS ,D) (or sim(DS ,D)) can be done by
a scan over DS and D to compute cdfDS (x) and cdfD(x)
for every x ∈ DS ∪ D. This takes O(nS + n) time, where
nS = |DS | and n = |D|, assuming sorted sets. We use a more
efficient algorithm that only scans DS . For the i-th value DS [i]
in DS (in key value order), we run a binary search to find its
rank j in D (i.e., D[j] is the first element in D no smaller than
DS [i]). We compute the absolute gap |i/nS − j/n| and report
the maximum gap for all i ∈ [1, nS ] as dist(DS ,D). This
reduces the time complexity to O(nS log n). Since nS ≪ n,
O(nS log n) is better than O(nS + n) in practice.

The earth mover’s distance (EMD) [27] is another similarity
measure. Computing EMD on D and DS takes O(n3 log n)
time (even the state-of-the-art approximation takes O(dn)
time [28]), which is too expensive for our system.

IV. PROPOSED SYSTEM

This section starts with an overview of ELSI and illustrates
how to build an index with it (Section IV-A). We then explain
the two core ELSI components, build processor and update
processor, in Section IV-B1 and Section IV-B2, respectively.

A. ELSI Overview

As shown in Figure 3, ELSI has a build processor and an
update processor that facilitate the building and updates of a
learned spatial index, which we call the base index.

Building a base index may train a single index model on
D, or it may partition D and train an index model for each
partition. ELSI improves the build time of each index model
while it does not interfere with the partitioning (cf. Figure 3
where ELSI helps build three models M0,0, M1,0 and M1,1).
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Fig. 3: The ELSI system.
Algorithm 1 summarizes how ELSI builds a single index

model for D (or a partition of it), i.e., the build API in Figure 3.
Here, we use typewriter font to denote functions that come
with a base index. The algorithm starts by mapping D to a one-
dimensional space (line 1) and sorting it (line 2). The mapping
function map(·) is supplied by the base index (e.g., the Z-curve
mapping of ZM). Then, the sorted data set is passed to our
build processor (lines 3 and 4, detailed shortly), where we use
a small data set DS to approximate D. We train an index model
MDS on DS using the train(·) function of the base index
(e.g., FFN training, line 5). Finally, we predict the address of
every point in D using MDS and a model prediction function
predict(·) from the base index (e.g., FFN prediction), and we
record the maximum prediction errors errl and erru (line 6).
Model MDS is returned as the index model M for D together
with the error bounds (line 7).

After an index is built, queries are processed using the
procedures that come with the base index. Updates go through
our update processor (the update API in Figure 3, detailed
shortly) that predicts the next time to rebuild (the to rebuild
API). When a rebuild is triggered, we use the build API to
rebuild the base index.

Query error bounds. Existing learned spatial indices only
offer empirical query error bounds but not theoretical bounds.
ELSI enables efficient building of such indices and hence also
offers empirical query error bounds. A few learned indices for
one-dimensional data, e.g., PGM [6], use piece-wise linear
approximation to approximate the CDF of one-dimensional
data, which allows a theoretical bound on the query error based
on the approximation error. Extending this idea to learned
spatial indices is interesting but beyond the scope of our study.

B. ELSI Modules

ELSI has two main modules: the build processor and the
update processor.

1) Build Processor: The build processor uses an index
building method selector to select a method P from a method
pool P for learning an index. The aim is to achieve both

Algorithm 1: build index
Input: D
Output: Model M, error bounds errl and erru

1 D ← map(D);
2 D ← sort(D);
3 P ← get build method(λ, wQ, D);
4 DS ← compute set(D, P );
5 MDS ← train(DS);
6 errl, erru ← get error bound(MDS ,D, predict(·));
7 return MDS , errl, erru;

efficient index building and query processing for D. A method
scorer is employed, and the method with the maximum score
is selected. The key element of method scorer is two FFNs
(Component 2 in Figure 4), one that estimates the index
building cost of a method P , denoted by CB(·), and one that
estimates the query cost of the index built by P , denoted by
CQ(·). We consider point query costs since point queries are
building blocks for more complex queries. Costs of other query
types, e.g., window queries, can also be considered.
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The combined score C(P,D) of method P for D is then

a weighted sum of the two costs, with a balancing parameter
λ ∈ [0, 1] and a query frequency parameter wQ ∈ [1,∞)
allowing user-defined trade-offs between the costs:

C(P,D) = λ · CB(P,D) + (1− λ) · wQ · CQ(P,D) (2)

Each FFN of the method scorer takes as input the ID (a one-hot
embedding) of method P and the cardinality and distribution
of D (Component 1 in Figure 4). We use dist(DU ,D) to
represent the distribution of D for fast online computation,
where DU is a uniform data set of the same size as D. The
method scorer is trained based on every method in the method
pool, which contains the methods for shrinking the training set.
Currently, we have six methods. The output of the two FFNs
is a pair of predicted index building and query cost scores of
P (Component 3 in Figure 4). They represent the predicted
speedups that P can yield, comparing with the original index
building method of the base index.

2) Update Processor: The update processor provides de-
fault update procedures (a base index can also use its built-
in update procedures). It uses a separate list to store newly
inserted points and deleted existing points (or just marks the
points as deleted if allowed by the base index). This list is
scanned when processing a query, and the results are combined



with, or are used to filter, those from the index to form the
query result. A binary tree on the IDs of the updated points
can be employed to reduce the query time.

As more and more updates are performed on the full data set
D, the index models learned for D may become sub-optimal
for queries. We then perform a rebuild, by triggering a full
index build with the base index and the build processor. ELSI
takes a learning-based approach to predict the time to rebuild,
unlike traditional database systems such as Oracle [13], which
uses empirical rules. We use a rebuild predictor (an FFN, the
to rebuild API) CRB(·) that has a similar structure to that
of the FFN in the method scorer (Figure 4) but outputs a
binary value, indicating whether or not to rebuild. The rebuild
predictor takes as input the cardinality and distribution of D
(i.e., dist(DU ,D) as above), the index depth, the update ratio,
i.e., |D′|/|D|−1 (D′ is the updated data set), and the changes
to D caused by updates. We quantify the changes to D by the
difference between the CDFs of D′ and D, i.e., sim(D′,D),
since a learned index learns the CDF of a data set. When a full
index is built (or rebuilt) on D, we compute and store its CDF
(an O(n)-sized vector). We maintain a copy of this CDF as the
CDF of D′ and compute sim(D,D′) as updates are processed.
We run the rebuild predictor after every fu, with fu being
a system parameter. Compared with the build processor, the
model input has not information about build method because
the build processor concerns the build methods, while the
rebuild predictor concerns the index itself.

V. INDEX BUILDING METHODS

This section details the index building methods in ELSI.
As mentioned earlier, these methods do not build new types
of indices but rather construct (or find) small data sets DS
that resemble the input data set D. We present three methods
adapted from the literature in Section V-A and propose two
new methods in Section V-B. We cover implementation details
in Section VII-B2.

A. Adapted Methods

The first two adapted methods use sampling and clustering
to construct DS from D, while the third identifies a pre-
generated data set DS that matches D.

1) Sampling: Random sampling was used in a recent
learned index [15] to reduce the training set size. The ELSI
sampling method (SP) uses systematic sampling [17] instead.
Given a sorted set D, SP constructs DS by selecting a point
after every ⌊1/ρ⌋ − 1 points, where ρ is the sampling rate.
DS then has ρ · n points, where n = |D|. Figure 5(a) shows
an example with 16 points (in red) mapped and sorted with a
Z-curve (SP also works with other mapped one-dimensional
spaces). Given ρ = 0.25, DS = {p4, p8, p12, p16} (points in
DS are in blue, also in the figures for subsequent methods).

Let the i-th point in D be D[i], and let its nearest sampled
point in DS be D[j] (i.e., the j-th point in D). With systematic
sampling, we bound the gap between i and j by ⌊1/ρ⌋ − 1,
i.e., |i−j| ≤ ⌊1/ρ⌋−1. According to the pigeonhole principle,
no other sampling strategy (including random sampling) can
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Fig. 5: Examples of ELSI index building methods.

achieve a smaller bound on this gap. We thus expect the DS
produced by SP to be a strong baseline approximation of D.

While SP is efficient, it only considers the point order in
the mapped space, not the data point locations. The sampled
points may then be far away from the points they represent,
especially in sparse regions, cf. p8 in Figure 5(a).

2) Clustering: To preserve data distribution patterns, the
clustering method (CL) clusters D in the original space
into C (a system parameter) clusters and uses the set of
cluster centroids as DS . We use the k-means algorithm due
to its simplicity, although other algorithms may also apply.
Figure 5(b) shows an example. After clustering the 16 points
into C = 4 clusters, we compute four centroids p′2, p′6, p′8,
and p′14 to obtain DS . Note that these centroids are closer to
the points that they represent than those chosen by SP.

We note that the cluster centroids may not be part of D.
However, this does not impact the mapping from a data point’s
coordinates to its search key, which is either independent of
the data set (e.g., ZM [10] using Z-curves), or is computed
using D (e.g., the ML-Index [11] using iDistance [22]). MR
and RL, to be presented shortly, also use non-subsets of D.

However, clustering with k-means is expensive when C is
large, taking O(C · |D| ·d · i) time for a straightforward imple-
mentation with i iterations. Further, it may create unbalanced
clusters. For example, in Figure 5(b), cluster P2 has only two
points, while the other clusters have four or five points.



Algorithm 2: get RS
Input: D, β, {(l1, u1), (l2, u2), . . . , (ld, ud)}
Output: Representative set DS

1 if |D| ≤ β then
2 DS ← {median point in D};
3 else
4 for i = 0; i < 2d; i++ do
5 {(li1, ui

1), . . . , (l
i
d, u

i
d)} ← compute bounds for

partition i;
6 Di ← get points in the i-th partition;
7 DS ← DS ∪ get RS(Di, β, {(li1, ui

1), . . . , (l
i
d, u

i
d)});

8 return DS ;

3) Model Reuse: Model reuse [16] (MR) was originally
proposed for one-dimensional data. It generates synthetic data
sets with different distributions (e.g., Gaussian) and pre-trains
index models on them. The data set with the CDF that is the
most similar to that of D (by dist(DS ,D)) is used as DS , and
its pre-trained model is used to index D. MR first generates
CDFs that together (heuristically) cover the CDF space, such
that the distance between the CDF of any input data set and
that of at least one generated CDF is approximately bounded
by a pre-defined threshold ϵ ∈ (0, 1]. MR then generates
synthetic data sets following the CDFs. By following this idea,
we first generate CDFs and then corresponding synthetic data
sets in the mapped space of a base index.

Figure 5(c) shows an example of a multi-level index (RSMI)
built by MR. There are three synthetic data sets DS1, DS2,
and DS3 (plotted in the original space for ease of observation),
with pre-trained models MDS1

, MDS2
, and MDS3

, respec-
tively. Given a data set D0,0 for indexing, we compare it with
all three synthetic data sets and find DS1 to be the most similar.
We thus use MDS1

to index D0,0. This model predicts D0,0

into two partitions D1,0 and D1,1, which are the most similar
to DS1 and DS2 and hence are indexed by MDS1

and MDS2
,

respectively. The process continues until no more partitioning
is required by the base index.

B. Proposed Methods

To address the limitations related to index building effi-
ciency (CL) or query efficiency (SP and MR) of the adapted
methods, we propose two additional methods.

1) Representative Set: The first method, representative
set (RS), recursively partitions the d-dimensional original data
space into 2d equi-sized partitions (e.g., four quadrants in a 2-
dimensional space, as in quadtree partitioning). The process
continues until every partition has no more than β points,
where β is a system parameter. For each partition, the median
point in the mapped one-dimensional space is added to DS .

We summarize RS in Algorithm 2, where the lower
and the upper bounds of the data space are denoted by
{(l1, u1), (l2, u2), . . . , (ld, ud)}. The bounds of the 2d par-
titions in the recursive function calls are combinations
of l1, l2, . . . , ld, u1, u2, . . . , ud, and l1+u1

2 , l2+u2

2 , . . . , ld+ud

2 .
Points in each Di can be computed with a scan over D.

Figure 5(d) gives an example, where d = 2 and β = 4,
and Di,j denotes partition j at partition level i. At level 1,
D1,2 and D1,4 do not exceed 4 points each and do not require
further partitioning. Partitions D1,1 and D1,3 are partitioned
for one more level. Finally, we have 9 non-empty partitions
(solid green rectangles). Their median points form DS =
{p1, p2, p3, p4, p6, p8, p10, p12, p14}.

RS uses partitions of the original space and ranks in the
mapped space for sampling in order to better approximate the
distribution patterns of D in both the original and mapped
spaces. RS is expected to achieve high query performance, to
be confirmed experimentally.

2) Reinforcement Learning: The reinforcement learning
(RL)-based method aims to learn a set DS of up to ηd points
that best approximate D, using reinforcement learning. Here,
η is a system parameter. RL partitions the data space with an
ηd grid, fills every cell with a point initially, and continues
to remove points from (or add points back into) the cells
(Figure 5(e)). It monitors dist(DS ,D) and terminates when
dist(DS ,D) stops improving.

Reinforcement learning formulation. There are 2η
d

point
combinations for forming different DS . To approach the opti-
mal DS , we reduce the search cost via reinforcement learning
and formulate the search as a Markov decision process (MDP):

(1) State space S, where a state st ∈ S at time step t is a
vector (st[1], st[2], . . . , st[ηd]), where st[i] is a binary variable
that indicates whether there is a point in cell i. The cells are
ordered by their ranks in the mapped space of the base index.
The initial state s0 has value 1 in every cell, i.e., DS starts
with a uniform distribution.

(2) Action space A, where an action a ∈ A is to add (or
remove) a point to (from) a cell.

(3) Reward function R: S×A×S → R, which is calculated
as the reduction in dist(DS ,D) caused by an action at ∈
A on state st ∈ S , i.e., R(st, at, st+1) = dist(DS t,D) −
dist(DS t+1,D).

(4) State transition function P: S ×A× S → [0, 1], which
describes a probability distribution of the next state st+1 given
state st at time step t and action at.

(5) Discount factor γ ∈ [0, 1], which discounts the reward
accumulated further into the future (γ = 0.9 in experiments).

We use a deep Q-network [29] (DQN) to learn the optimal
policy π: A×S → [0, 1] that maximizes the reward. At step t,
we choose cell i with DQN, update st[i] to st+1[i] = 1− st[i]
with probability ζ (ζ = 0.8 in experiments), and compute
the reward. The DQN is trained by recent state transition and
reward records in memory after every five steps. When the
learning stops, the final state yields the DS returned by RL.

VI. COST ANALYSIS

We analyze the build, query, and update costs when using
ELSI and benchmark these against those when not using ELSI.

A. Cost Formulation
For simplicity, we consider building and querying a single

index model M on a data set D. We decompose the build and
query costs to facilitate the performance comparison.



Build cost decomposition. The build cost costb of a map-
and-sort based index can be decomposed into three terms:
(i) data preparation cost costdp, (ii) model training cost
costtr, and (iii) extra costs costex introduced by ELSI where
costb = costdp + costtr + costex. The build costs are:

(i) costdp = O(nd+n log n): All n points in D are mapped
to a one-dimensional space, which typically takes O(nd) time
to scan all points and dimensions. The points are then sorted
in the mapped space, taking O(n log n) time.

(ii) costtr = T(n) +M(n): All n points in D are used to
train an index model. The costs depend on the data set size, the
model structure (e.g., the numbers of layers), and the number
of training iterations. For ease of comparison, we focus on the
impact of the data set size and denote the two costs by T(n)
for training and M(n) for model invocation.

Query cost decomposition. We focus on point queries and
consider a predict-and-scan process. The query cost costq has
two terms: (i) prediction cost costpr and (ii) scan cost costsc
where costq = costpr + costsc. The query costs are:

(i) costpr = M(1): The index model is invoked once with
the (mapped) query point. We use M(1) to denote this cost.

(ii) costsc = O(errl + erru): A scan is run over addresses
adjacent to the predicted one, bounded by errl and erru.

B. Build Cost

To build an index with ELSI, the data preparation cost
remains costdp = O(nd + n log n), while the model training
cost now is costtr = T(|DS |)+M(n), since training over DS .
The extra costs costex incurred by ELSI include M(1)+O(n)
time to invoke the method scorer to select build method and
additional method-specific costs. Next, we consider T(|DS |)
and the extra costs of each method. The overall costs and
empirical results of the methods are summarized in Table I.

SP samples ρ ·n points. Its model training cost is costtr =
T(ρ · n) +M(n), and it incurs O(ρ · n) extra time to sample
the points. CL uses C cluster centroids for model training.
Its model training cost is costtr = T(C) +M(n). Clustering
with k-means adds O(C · n · d · i) time to costex, using a
straightforward implementation with i iterations. The centroids
also need to be mapped and sorted, but they do not impact
costdp in big-O terms, as C ≪ n. MR uses pre-trained
models and does not run online training, i.e., costtr = M(n).
It computes the similarity between D and nmr synthetic
sets, each of size nS , taking O(nmrnS log n) extra time.
RS stops partitioning when a partition reaches β points and
uses one point per partition for training. Its training cost is
costtr = T(n/β) + M(n). The partitioning tree has depth
O(log2d(n/β)) on average and takes O(n log2d(n/β)) time
to compute. RL approximates the original data set with a
synthetic set of size ηd, i.e., costtr = T(ηd) +M(n). Gener-
ating this set with reinforcement learning adds extra costs for
state and action training, reward calculation, and cell selection
via DQN. Each step invokes the DQN network, which takes
M(1) cost, and calculates the reward (i.e., dist(DS ,D)), which
takes O(ηd log n) time. The DQN is trained once in every five
steps, performing learning on α past state transition records

and corresponding rewards. With e steps, these combine to
contribute M(e) +O(eηd log n) + T(α) extra time.

C. Query Cost

ELSI does not change the structures of index models. Its
prediction cost is still costpr = M(1). It may incur extra
scan costs, since model MDS that is built on DS may have
different error bounds from those of model M that is built on
D. Let errSl and errSu be the error bounds of MDS , and let
∆err = errSl + errSu − errl − erru. Then, the scan cost of
ELSI is costsc = O(errl + erru +∆err). Just like there are
no non-trivial bounds for errl and erru, there is no non-trivial
bound for ∆err. Intuitively, ∆err is expected to be inversely
proportional to ρ · n for SP, C for CL, 1 − ϵ for MR, 1/β
for RS, and η for RL. For future work, we plan to derive a
theoretical bound for ∆err.

D. Update Cost

Update processing with our default procedures takes
O(log nu) time assuming the list of inserted and deleted points
is indexed by the point IDs in a binary tree given nu points in
the tree. The rebuild predictor is triggered to make a prediction
after every fu updates adding M(1)/fu time.

VII. EXPERIMENTS

We run experiments on a computer running 64-bit Ubuntu
20.04 with a 3.60 GHz Intel i9 CPU, an RTX 2080 Ti
GPU, 64 GB RAM, and a 500 GB solid-state drive. We
use PyTorch 1.4 [30] and its C++ APIs to implement the
learned indices based on the GPU. The traditional indices are
implemented using C/C++ based on the CPU.

A. Experimental Setting Details

We apply ELSI to four learned spatial indices: ZM [10],
ML-Index [11], RSMI [8], and LISA [9]. We report the
performance of the last three and denote them as “ML-F”,
“RSMI-F”, and “LISA-F”, respectively (‘-F’ indicates that the
ELSI framework is used). Since ZM has been shown [8] to be
outperformed by RSMI, we only consider it in Section VII-D
to investigate the performance of ELSI.

We note that not all index building methods are applicable
to all learned spatial indices. For example, CL and RL do not
apply to LISA that relies on D to construct a grid, while CL
and RL may generate new points not in D. ELSI offers an
API to configure the index building methods used.

Competitors. We benchmark the learned spatial indices and
compare them using four traditional indices: (1) Grid [3]
partitions the data space with a regular grid, assigns data
points to the cells they fall into and stores the data points
in cell-wise fashion. We use a

√
n/B ×

√
n/B grid, i.e.,

each cell (block) has an average of B points. (2) KDB [2]
implements a kd-tree [31] with a B-tree structure to support
block storage. (3) HRR [20] is an R-tree bulk-loaded using a
rank space technique and a Hilbert-curve for the ordering. This
index offers the state-of-the-art window query performance;
(4) RR∗ [19] is a version of the R∗-tree (i.e., the revised R∗-
tree) with improved query performance.



Data sets. We use four real data sets, OSM1, OSM2,
TPC-H, and NYC, and two synthetic data sets, Uniform
and Skewed. OSM1 has about 100 million points (2.2 GB)
in North America. OSM2 has over 180 million points (4.4
GB) in South America. Both sets are extracted from Open-
StreetMap [32]. TPC-H [33] contains the quantity and
shipdate columns of 120 million records (5.0 GB) from the
lineitem table of the TPC-H benchmark. NYC [34] contains
the pickup points of 143 million yellow taxi transactions (5.6
GB) from the New York City.Each synthetic data set has
128 million points (2.5 GB) in a unit square. Uniform has
a uniform distribution, while Skewed is obtained by replacing
the y-coordinates of the points in Uniform by ys (s = 4),
following HRR [20].

B. Implementation Details

1) Implementation of the Spatial Indices: For Grid, HRR,
KDB, RR∗, and RSMI, we follow the implementation by Qi
et al. [8]. We implement ML and LISA to enable a consistent
comparison with the other indices. We use an FFN for all the
prediction models, ReLU activation function for the hidden
layer and minimize the L2 loss, and a learning rate of 0.01
and 500 epochs with the Adam optimizer, respectively. For
the method scorer, we set wQ = 1.0 for simplicity, and we
study the impact of λ. Note that the use of FFNs instead
of the piecewise linear functions used in LISA breaks the
monotonicity of its shard prediction functions, which impacts
the accuracy of window queries.

We use a block size of B = 100 for data storage. We per-
form all experiments in main memory for ease of comparison
(it is straightforward to place the blocks in external memory).

2) Implementation of ELSI: Next, we detail the implemen-
tation of the key components of ELSI.

Method scorer training. To train the method scorer, we
generate data sets with cardinalities ranging from 10l to 10u,
where l = 4 and u = 8. We vary dist(DU ,D) from 0.0 to
0.9 with a step size of 0.1 to generate data sets with different
distributions. When integrated with a base index, we use every
applicable method in the method pool to build an index for
each generated data set and run point queries. We record the
speedups of index building and querying relative to those of
the original methods of the base index. These form the ground
truth for training the method scorer.

Rebuild predictor training. To train the rebuild predictor,
we build learned indices with data sets of size 10u and
different distributions, as done above. We insert random points
(or delete existing points) and run point queries every time
2i% · n (i ∈ N) point updates (inserts or deletes), on indices
with and without rebuilds. We record the statistics covered
in Section IV-B2 to compose model training samples, and
we set the corresponding model output heuristically: 1 (to
rebuild) when the query time without rebuilds exceeds that
with rebuilds by 10%, and 0, otherwise.

System preparation costs. ELSI preparation includes the
training of method scorer and rebuild predictor, which require
the generation of training sets and the training of new models

from scratch. ELSI preparation is an off-line and one-off
task, and once learned, the ELSI method selector and rebuild
predictor can be reused for different data sets. As u (u ∈ N+)
decreases from 8 to 4, the ELSI preparation times will drop
from 10.5 to 1.9, 0.2, 0.03, and 0.003 hours, respectively.

C. Effectiveness of the Method Selector

As mentioned in method scorer training (Section VII-B2),
there are 300 generated synthetic data sets, which are com-
posed of the combinations of five different cardinalities, six
build methods, and ten different similarities with uniform
distribution. We then use accuracy to measure the method
selector where the accuracy represents the ratio that the
method selector selects the same method as expected.

To test the accuracy of the method selector under different
values of u, we vary u from 4 to 8 and report the accuracy in
Figure 6(a). As expected, the method selector has the highest
accuracy when u = 8, which means that the long preparation
time (10.5 hours) has paid off. Meanwhile, we see that, if
index build time is of priority, even using a small value of
u = 4 can offer a high accuracy, as it is easier to predict
which method to use in this case (e.g., MR).

To further highlight the effectiveness our FFN-based method
selector, we compare it with method selectors using random
forests (RF) and decision trees (DT), including two variants
each, i.e., regression-based (R) and classification-based (C).
We compare with four models: RFR, RFC, DTR, and DTC.

Figure 6(b) shows that using an FFN as the method selector
has a consistently higher (or the same) accuracy than that
using a random forest or a decision tree, especially when
λ < 0.6. This highlights the effectiveness of our FFN-based
method selector. When λ ≤ 0.6 (prioritising query times), the
selector accuracy is in general lower than that when λ ≥ 0.8
(prioritizing index build times). This is because optimizing
the query times of the learned indices is more difficult than
optimizing the index build times, since the query times of the
indices built by different methods are much closer than the
build times of the different methods. FFN manages to achieve
an accuracy around 0.8, while the other methods have accuracy
at as low as 0.5. Further, when λ ≈ 0.6, the accuracy is the
lowest for FFN, because the build times and the query times
have similar weights, which makes it difficult to learn and
select the optimal index building method. When λ = 0.1, there
is a drop in the accuracy of both RFR and DTR. They have
been confused by the high query efficiency of the indices built
by OG, and have often selected OG as the building method.
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D. Effectiveness of Index Building Methods

We study the relative performance of the index building
methods SP, CL, MR, RS, and RL (cf. Section V). We also
show the performance of the base indices without ELSI, i.e.,
original (OG), and a random sampling method RSP [15].

Pareto analysis. First, we show the point query times and
build times of the methods when varying method-specific
parameters following SOSD [35]. Figure 7 presents the results
on OSM1 for all four base indices. We make four observations:

(1) The build times increase while the query times decrease
for the different methods, with the increase of ρ in SP and
RSP, C in CL, 1 − ϵ in MR, 1/β in RS, and η in RL (α =
10, 000, e = 50, 000). RSP has higher query times than SP
and few benefits in build times, because RSP has larger CDF
distances between DS and D than SP does, impacting query
efficiency on D. In what follows, we only consider SP.

(2) The proposed RS and RL methods have low query times,
because of their high-quality training sets. RS achieves the
lowest query time for ZM, while it is very close to CL for
RSMI and SP for LISA. Meanwhile, its build times are much
lower than those of CL that employs an expensive clustering
process. RL performs close to RS but is inapplicable for LISA.

(3) RS and RL have larger build times than SP and MR,
due to their larger training set size and more complex learning
process, respectively. SP simply samples ρn points for train-
ing, while MR just reuses a pre-trained model. Both methods
are thus favored in build-cost sensitive settings.

RS and RL have the advantage that tuning their parameters
β and η leads to query times close to, or even below, those of
OG, which is more difficult to achieve with SP and MR. The
two methods are favored in query-cost sensitive settings.
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Fig. 7: Comparison of different build methods on OSM1. In
each sub-figure, as the query time decreases, ρ in SP and RSP
increases from 0.0001 to 0.01, C in CL increases from 100 to
10,000, ϵ in MR decreases from 0.5 to 0.1 (if ϵ is too small,
no pre-trained models may be reused), β in RS decreases from
10,000 to 100, and η in RL increases from 8 to 32.

(4) The query times of the indices built by ELSI may be
lower than those of OG. This is counter intuitive but can be
explained as follows. OG uses the full data sets, which may
be too large and may contain noisy patterns (e.g., outliers) that

confuse the index model. In comparison, the methods in ELSI
learn from representative data samples, which are smaller and
contain more consistent patterns, leading to indices with better
query performance on average.

Results on the other data sets exhibit similar patterns and
are omitted. Since the build times change much more rapidly
(note the scales of the axes) and ELSI is proposed to reduce
the index build times, we use the values that yield the best
build times as default values, i.e., ρ = 0.0001, C = 100,
ϵ = 0.5, β = 10, 000, and η = 8 (corresponding the points
denoted by ‘⊙’ in Figure 7).

Cost decomposition. Table I decomposes the index building
and query costs on OSM1 with ZM. For index building, as all
methods share the same map-and-sort data preparation process
and have the same cost (i.e., O(nd+n log n) cost and 14 s in
experiments), we omit it in Table I. SP, CL, RS, and RL train
index models using subsets of similar sizes and have similar
training times. OG has the largest training time, while MR
has the smallest training time, as it simply reuses pre-trained
models. After adding in the extra costs, all methods except CL
outperform OG by at least an order of magnitude, confirming
the efficiency of ELSI in index building. Meanwhile, the
model prediction errors errl + erru (denoted by “|Error|”)
of the different methods are all at the same magnitude as OG,
confirming the query efficiency of ELSI.

TABLE I: Cost Decomposition on OSM1

Building cost (seconds) |Error|
Training Extra (+M(1) +O(n)) (×105)

SP T(ρn) +M(n) O(ρn) 6.41 1

CL T(C) +M(n) O(Cndi) 5.81 213

MR M(n) O(nmrnS logn) 6.81 0.1

RS T(n/β) +M(n) O(n log2d(n/β)) 6.01 20

RL T(ηd) +M(n) M(e) +O(eηd logn+ T(α)) 5.21 18

OG T(n) +M(n) n/a 6.3360 0

E. Ablation Study

We conduct an ablation study comparing ELSI with a
variant of ELSI that uses an index building method selector,
denoted by “Rand”, that selects each index building method
with an equal probability.

Performance comparison. Table II shows a comparison
of the build and query times when building an index using
ELSI, Rand, and each index building method, on OSM1 using
λ = 0.8. As expected, Rand has worse build times than
ELSI, as Rand risks selecting a slow method for some index
models. Meanwhile, Rand does not offer better query times.
This confirms the effectiveness of the ELSI design with a
learned method selector.



TABLE II: Comparison of ELSI with a Random Method
Selector on OSM1

Index ELSI Rand SP CL MR RS RL OG

ZM 57 217 277 1,635 42 414 364 1,778
Build RSMI 233 557 326 2,372 115 337 369 53,435

time (s) ML 60 212 148 1,278 43 202 289 3,483
LISA 42 175 157 NA 37 190 NA 1,830
ZM 0.73 0.73 0.73 0.73 0.73 0.72 0.72 0.72

Point query RSMI 0.57 0.56 0.60 0.55 0.57 0.55 0.56 0.59
time (µs) ML 0.88 0.85 0.83 0.81 0.88 0.82 0.83 0.77

LISA 0.56 0.55 0.55 NA 0.56 0.53 NA 0.53

F. Index Building Performance

We now compare the build times of the learned indices with
and without using ELSI and the traditional indices.

Varying data distribution. Figure 8 shows that the tradi-
tional indices (i.e., Grid, KDB, HRR, and RR∗) are faster to
build than the learned indices (i.e., ML, LISA, and RSMI)
without ELSI. Using ELSI, the build times of the learned
indices (i.e., ML-F, LISA-F, and RSMI-F) are reduced to the
level of the traditional indices. The performance gain is at least
25 times (217 s vs. 5,481 s for ML-F and ML on OSM2)
and up to 229 times (233 s vs. 53,435 s for RSMI-F and
RSMI on OSM1). LISA-F even outperforms all the traditional
indices on OSM2, i.e., 74 s vs. 126 s (Grid), on TPC-H, i.e.,
43 s vs. 66 s (KDB), and on NYC, i.e., 55 s vs 75 s (KDB),
respectively. On average, ELSI speeds up the building of the
learned indices by 70 times. We notice that Grid is worse
on NYC than on the other data sets. This is because Grid
uses a two-level structure where every cell contains an array
of MBRs each corresponding to a data block (to help query
processing later on). Inserting points into this structure while
minimizing the MBRs is more expensive when the data points
are skewed (which is the case for NYC), since the data blocks
in the denser cells require frequent splits.
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Fig. 8: Build time vs. data distribution.
Varying λ. Figure 9 shows how the build times of the

learned indices using ELSI change when varying λ. The
traditional indices and the learned indices without ELSI are
not impacted by λ. Their performance remain as reported in
Figure 8. For ease of comparison, we include the results of
the traditional index RR∗ and the learned index RSMI without
using ELSI in Figure 9. As the relative performance of the
different indices are similar across the data sets, we only
show results on Skewed and OSM1. This also applies to the
subsequent studies.

We see that the build times of the ELSI-based indices
decrease as λ increases. Guided by Equation 2, the ELSI index
building method selector selects more build-time efficient

methods given a larger λ. MR is the most frequent choice
when λ ≥ 0.8 (as it simply reuses pre-trained models), which
brings down the index build times to below those of RR∗

(except for RSMI-F on OSM1). When λ is small, the query-
optimized methods RS, RL and OG are selected. While these
incur higher build times, the resultant build times are still much
closer to RR∗ than RSMI without ELSI. This again confirms
the effectiveness of ELSI in reducing the index build times.

10
1

10
2

10
3

10
4

10
5

0.0 0.2 0.4 0.6 0.8 1.0

B
u
ild

 t
im

e
 (

s
)

λ

ML-F
RR*

RSMI
RSMI-F

LISA-F

(a) Skewed

10
1

10
2

10
3

10
4

10
5

0.0 0.2 0.4 0.6 0.8 1.0

B
u
ild

 t
im

e
 (

s
)

λ

ML-F
RR*

RSMI
RSMI-F

LISA-F

(b) OSM1

10
1

10
2

10
3

10
4

10
5

0.0 0.2 0.4 0.6 0.8 1.0
B

u
ild

 t
im

e
 (

s
)

λ

ML-F
RR*

RSMI
RSMI-F

LISA-F

(c) TPC-H

10
1

10
2

10
3

10
4

10
5

0.0 0.2 0.4 0.6 0.8 1.0

B
u

ild
 t

im
e

 (
s
)

λ

ML-F
RR*

RSMI
RSMI-F

LISA-F

(d) NYC

Fig. 9: Build time vs. λ.

G. Query Performance

Next, we report point, window, and k nearest neighbor
(kNN) query times of the different indices.

1) Point Queries: We query every point in a data set after
indices are built and report the average query time.

Varying the data distribution. As Figure 10 shows, the
learned indices outperform the traditional ones except on Uni-
form where Grid is the fastest. This observation is consistent
with those in previous studies on learn spatial indices [8], [9].
Using ELSI yields very similar query times to those of the
learned indices when not using ELSI. The point query time
increases by at most 14%, i.e., 0.882 µs (ML-F) vs. 0.773 µs
(ML) on the OSM1 data set. Recall that our default λ value of
0.8 optimizes towards index build times. MR, which has high
query times, is more likely to be chosen by ELSI. RSMI-F and
LISA-F still obtain faster point query times than RSMI (on all
real data sets) and LISA (on OSM2 and NYC), since real data
points are skewed and noisy, and learning an index model on
a large set of such data may be impacted by noisy patterns,
as discussed earlier. On average, the point query times of the
learned indices are not increased by ELSI.

Varying λ. Figure 11 shows that the point query times of
the learned indices using ELSI increase slowly with λ. The
maximum increase is observed on ML-F, i.e., from 0.741 µs to
0.883 µs on OSM1 for λ equal to 0 vs. 1. RSMI-F and LISA-F
outperform both RSMI and RR∗ on OSM1. RSMI-F, LISA-
F, and ML-F all outperform RSMI and RR∗ on TPC-H. This
again confirms the effectiveness of ELSI in reducing index
build times while retaining query efficiency, and it justifies
using a relatively large λ value to achieve fast index building.
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Fig. 11: Point query time vs. λ.

2) Window Queries: We report the average window query
performance over 1,000 queries following the data distribution.

Varying data distribution. The learned indices with ELSI
have very similar query times to those of the learned indices
without ELSI when the query window size is 0.01% of the data
space (Figure 12(a)). The worst case is observed on Skewed,
where LISA-F is 1.35 times slower than LISA (2,976 µs vs.
2,197 µs), while LISA-F is 1.37 times faster than LISA on
TPC-H (6,048 µs vs. 8,329 µs).
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Fig. 12: Window query time vs. data distribution.

RSMI (by original design) and LISA (when using FFNs)
return approximate window query results. Figure 12(b) shows
the impact of ELSI on the query recall (i.e., the ratio of
ground truth points in the returned query results). The recall
of both RSMI and LISA drops with ELSI, which is expected.
The recall of RSMI-F and LISA-F stays above 91% and
92%, respectively, again confirming the effectiveness of ELSI
in retaining the query performance. By design, ML offers
accurate results, which are not impacted by ELSI. For brevity,
we omit the recall figures for the following window query

experiments, since the gaps in the recall remain similar, and
the recall of RSMI-F and LISA-F stays over 90%.

Varying λ. Figure 13(a) shows the window query times
when varying λ on OSM1. As observed for point queries, the
window query times of the ELSI-based indices increase slowly
with λ, confirming the robustness of ELSI to variations in λ
for window queries. Results on the other data sets exhibit a
similar pattern, and their figures are omitted.
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Fig. 13: Window query time vs. λ and window size.

Varying query window size. Figure 13(b) further shows
the impact of the query window size. The query times increase
with the query window size (from 0.0006% to 0.16% of the
data space size) for all indices tested, which is expected.
Notably, the query times of the ELSI-based indices do not
grow faster than those of RR∗ and RSMI without ELSI. This
indicates the robustness of the ELSI-based indices to variations
in the query window size.

3) KNN Queries: We report average kNN query perfor-
mance over 1,000 kNN queries that follow the data distribution
of the data sets with k = 25. We omit results when varying λ
and k because they resemble those for window queries.

Varying data distribution. Figure 14(a) shows the kNN
query times when k = 25. Like the observations on window
queries, RSMI and RSMI-F are the fastest, except on Uniform
and TPC-H. This is expected because the learned indices use
window queries as the basis for kNN queries. Using ELSI
retains the query performance, yielding an average increase in
the query time of only 3%. In the worst case, ELSI increases
the query time from 430 µs (LISA) to 736 µs (LISA-F) on
Uniform, which is considered reasonable given the large data
set of 128 million points.

In terms of recall, Figure 14(b) shows that ELSI causes a
maximum drop of 10% (95% vs. 85% for RSMI and RSMI-F
on Skewed). LISA-F drops at most 6% compared with LISA
(98% vs. 92% on OSM1), while ML-F stays at 100%.

H. Update Performance
We examine the impact of updates and focus on insertions

due to the space limit. We use 10% of the points from OSM1
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Fig. 14: KNN query time vs. data distribution.
as the initial set to build an index and use data from Skewed
for insertions. We run point queries for all points indexed
and 1,000 window queries after the insertions (results of kNN
queries are omitted for brevity). We report the average time
for each query type.

We show the results of the ELSI-based indices with and
without global rebuilding with the update processor. The
indices without rebuilds are denoted by ML-F, LISA-F, and
RSMI-F; and those with rebuilds are denoted by ML-R, LISA-
R, and RSMI-R. We include RR∗ as it is the traditional index
that shows the overall best query performance.

10
-1

10
0

1 2 4 8 16 32 64 128 256 512

R
e
s
p
o
n
s
e
 t
im

e
 (

µ
s
)

Inserted points (%)

ML-F
ML-R

RSMI-F
RSMI-R

LISA-F
LISA-R

RR*

(a) Insertion time vs. insertion ratio

10
0

10
1

1 2 4 8 16 32 64 128 256 512

R
e
s
p
o
n
s
e
 t
im

e
 (

µ
s
)

Inserted points (%)

ML-F
ML-R

RSMI-F
RSMI-R

LISA-F
LISA-R

RR*

(b) Point query time vs. insertion ratio

Fig. 15: Skewed data insertion.
Insertions. Figure 15(a) shows the average insertion time.

For RR∗, the insertion time grows gradually as more points are
inserted due to its self-balancing insertion procedure without
rebuilds. For the learned indices, the average insertion times
are relatively high for the first 1% of n insertions because
most data pages are full after the learned indices are built,
meaning that insertions cause the creation of relatively many
pages (LISA and RSMI use built-in insertion procedures, and
ML uses extra data pages to store points inserted into each
index model). Subsequently, LISA-F and LISA-R have stable
insertion times that increase gradually as for RR∗. The rebuild
predictor guides LISA-R not to rebuild as its point query times
do not deteriorate (cf. Figure 15(b)). For ML-R and RSMI-R,
global rebuilds are triggered after 8% of n insertions (and a
rebuild takes up to 133 and 60 seconds, respectively), causing
higher insertion times. We will see next that these rebuilds pay
off by keeping the query times stable.

Point queries. Figure 15(b) shows the point query times
after insertions, which mostly increase as expected. ML-R and
RSMI-R are exceptions. Their global rebuilds bring down the
query times substantially, e.g., after 512% of n insertions, ML-
R and RSMI-R exhibit query times that are 19% and 47%
lower than ML-F and RSMI-F, respectively.

Window queries. For window queries after insertions,
the query times again increase, as shown in Figure 16(a).
Now RR∗ and RSMI have the lowest query times, which is
consistent with observations from the earlier window query
experiments. The global rebuilds keep the query times of ML-

R lower than those of ML-F. However, RSMI-R is not always
faster than RSMI-F. This is because the local index rebuilds of
RSMI-F may lead to less accurate structures with fewer points
to be scanned for a window query.
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Fig. 16: Window queries with skewed data insertion.
Figure 16(b) shows the RSMI-R global rebuilds help retain

the recall above 97%, while the local rebuilds (RSMI-F) only
keep the recall above 90%, further justifying global rebuilds.

I. Summary

We conducted experiments to show (1) the effectiveness of
ELSI to select the most appropriate index building method
and to determine the right timing for index rebuilds, (2) the
efficiency of index building with ELSI, and (3) the efficiency
of query processing using the indices built by ELSI. The
results show that: (1) ELSI can select the most appropriate
index building method with an accuracy over 80%, and it also
predicts the right time for index rebuilds, which reduces the
query times after data insertions by more than 47%. (2) For
index building, using ELSI (i.e., ML-F, RSMI-F, and LISA-F)
is one to two orders of magnitude faster than building the
learned indices directly (i.e., ML, RSMI, and LISA). This
brings down the index building time to the level of those of
the traditional indices (Grid, KDB, HRR, and FR∗). (3) For
query processing, the learned indices built with ELSI share
similar times with the respective learned indices built without
ELSI, e.g., the kNN query times differ by just 3% on average.

VIII. CONCLUSIONS

We propose ELSI, a versatile system that accelerates the
building and re-building of a class of learned spatial indices,
while retaining the high query efficiency of the indices. ELSI
is applicable to learned spatial indices that follow the map-
and-sort indexing paradigm and the predict-and-scan query
paradigm. More specifically, ELSI encompasses a suite of
methods for constructing small and representative training data
sets for index learning and rebuilds. Given an input data set,
ELSI can adaptively choose a training-set reduction method
that produces a learned index with high query efficiency.

In future work, it is of interest to integrate ELSI into open-
source systems such as PostgreSQL to make it more broadly
available and to gain experience from real applications. We
also plan to extend ELSI to support query-aware learned
indices such as Flood [24].
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