
Chameleon: Towards Update-Efficient Learned
Indexing for Locally Skewed Data

Na Guo1,2 Yaqi Wang2 Wenli Sun2 Yu Gu1∗ Jianzhong Qi3 Zhenghao Liu1 Xiufeng Xia2 Ge Yu1
1Northeastern University, 2Shenyang Aerospace University, 3The University of Melbourne

{1710582@stu, {guyu, liuzhenghao, yuge}@mail}.neu.edu.cn
{{wangyaqi, sunwenli}@stu, xiaxiufeng@mail}.sau.edu.cn, jianzhong.qi@unimelb.edu.au

Abstract—Recently, learned indexes are assisting and are being
adopted to replace traditional indexes for their low memory usage
and high query performance. However, existing learned indexes
suffer in query efficiency when dealing with locally skewed data
distributions which may be caused or exacerbated by ubiquitous
updates. Frequent model retraining and reconstruction is re-
quired under this circumstance. To address this issue, we present
Chameleon, an adaptive learned index for locally skewed data
especially in the context of frequent updates. We propose a
metric for measuring local skewness, based on which we employ
Multi-Agent Reinforcement Learning to assist in locating locally
skewed regions and optimizing index structures. Additionally, to
reduce the blocking time caused by index model retraining, we
propose a lightweight lock named the Interval Lock to achieve
a non-blocking retraining. Extensive experiments demonstrate
that, without costing more memory, Chameleon outperforms
the state-of-the-art learned indexes by up to 3.75× and 4.37×
in lookup times for read-only and mixed workloads, respectively,
and it accelerates update processing by up to 2.92×.

Index Terms—Learned Index, Locally Skewed Data, Frequent
Updates, Multi-Agent Reinforcement Learning

I. INTRODUCTION

Indexes play a crucial role in databases to speed up query
processing by reducing data scans. They are increasingly
important in the big data era, where datasets have become
too large to be scanned for each single query. Given a dataset,
a learned index utilizes machine learning (ML) techniques [1]
to learn the mapping from index keys to data storage positions.
Recent studies [2]–[4] demonstrate that learned indexes out-
perform traditional indexes such as B+Tree [5] in both query
time and memory costs [6]–[9].

While learned indexes have efficient query procedures, two
significant challenges remain: (i) It is challenging to con-
struct a learned index with ML models that closely fit the
distributions of datasets with varying distributions at local
regions. Fig. 1(a) shows the global data distributions and some
local data distributions of three real datasets. There are differ-
ent degrees of skewness at different regions in the datasets. We
refer to the region where the local data distribution is skewed
as the “locally skewed region”. Frequent updates of data can
lead to or aggravate local data skewness. Existing solutions [7],
[8], [10], [11] typically apply greedy construction strategy to
construct index structures, which may not accommodate well
the local data skewness. (ii) Reconstruction and retraining

* Corresponding author

(a) The CDFs of three commonly used datasets

(b) Oscillations of insertion delays caused by data updates

Number of data insertions

In
se

rt
io

n
 l

at
en

cy
 (

n
s)

key key key

C
D

F
 v

al
u
e

1

0

1

0

1

0

face wiki osmc

Fig. 1. Motivating example

due to frequent updates have a significant impact on
query latency. The query efficiency of learned indexes is
update-sensitive. Learned indexes are typically composed of
a series of models. With more data insertions, the models
which are constructed to fit the initial data distributions may
not fit the updated distributions. To maintain validity, a learned
index needs to split/merge nodes or to retrain (some of) the
models. Frequent retraining leads to a higher maintenance cost.
Taking ALEX – the learned index that has reported the best
overall query performance across different datasets – as an
example, Fig. 1(b) shows that the insertion latency of the index
fluctuates constantly. Frequent retraining leads to a significant
increase in insertion latency, as indicated by the red peaks
in Fig. 1(b).

In this paper, we propose a learned index to address the
challenge of measuring and processing locally skewed data
distribution (Chameleon), which can withstand frequent up-
dates of data acting like a chameleon. We present an Error
Bounded Hashing (EBH) as the model of leaf nodes to address
local skewness, which leverages the hashing capability to
flatten locally skewed data. We then introduce a metric to
effectively measure the local skewness of data distributions,
based on which Deep Reinforcement Learning (DRL) is used
to effectively locate locally skewed regions. Subsequently,

TABLE I
COMPARISON OF REPRESENTATIVE INDEX STRUCTURES

Index Construction1 Point Query2 Insertion Local Skewness3

Direction Strategy Inner Node Leaf Node Strategy Retraining Strategy Weakness Support

B+Tree TD Greedy BS BS In-place Blocking Keep balance Imprecise inner nodes ✓✓
DIC TD RL BS / Hash BS / Hash In-place Blocking Keep balance Imprecise inner nodes ✓✓
RS TD Greedy RT LIM+BS In-place Blocking — — ×
PGM BU Greedy PLM+BS PLM+BS Out-of-place Blocking Rebuild balance Imprecise inner nodes ✓
ALEX TD Cost-based LIM LRM+ES In-place Blocking — — ×
LIPP TD Greedy KLM — In-place Blocking — — ×
DILI BU+TD Greedy LIM — In-place Blocking — — ×
FINEdex TD Greedy LIM LRM+BS+LS Out-of-place non-Blocking Use Level Bin Level Bin scan [12] ✓
Chameleon TD MARL LIM Hash+LS In-place non-Blocking Use Hash — ✓✓✓✓
1 TD, BU, RL, and MARL denote top-down, bottom-up, reinforcement learning and multi-agent reinforcement learning, respectively.
2 BS, ES, PLM, RT, LIM, LRM, KLM, and LS denote binary search, exponential search, piecewise linear model, radix table, linear interpolation model, linear

regression model, kernelized linear model and linear scan, respectively.
3 “Strategy” represents how the index handles local skewness; “Weakness” represents extra operations compared to other indexes; × represents the inability

to handle local skewness, while ✓represents support. The number of ✓indicates the degree of support.

we propose an index construction algorithm based on Multi-
Agent RL (MARL). Additionally, to handle frequent data
updates, we propose a non-blocking retraining mechanism via
a lightweight lock and RL.

In summary, our contributions are as follows:
1) We design a memory-efficient learned index structure

named Chameleon for one-dimensional data that can adapt
to data with local skew distributions, via a combination of
linear models for the non-leaf nodes and Error Bounded
Hashing (EBH) models for the leaf nodes (Section III);

2) We propose a metric for measuring local skewness, and a
novel approach based on MARL to construct index structures,
effectively locating locally skewed regions (Section IV);

3) We define a lightweight lock, called Interval Lock, and
a non-blocking retraining mechanism based on Interval Lock
to address online retraining caused by frequent data updates
(Section V);

4) Extensive experiments on both real and synthetic datasets
demonstrate that Chameleon outperforms state-of-the-art
learned indexes, achieving up to 3.75× and 4.37× speedups in
lookup times for various workloads, respectively, and 2.92×
speedups in update processing – without taking up more
memory (Section VI).

II. RELATED WORK

We focus on one-dimensional learned indexes, which are
a basic component in most learned multi-dimensional in-
dexes [13]–[15]. The core idea of learned indexes is to design a
mapping from an index key to the storage position of the corre-
sponding data record, and such mappings can be learned with
a mathematical model (i.e., an index model). When the data
records are stored by the order of their index keys, the index
models essentially learn the Cumulative Distribution Function
(CDF) of index keys. We compare and summarize traditional
indexes and representative learned indexes in Table I, which
will be discussed in detail next. It can be observed that,
compared to traditional indexes and other advanced learned
indexes, Chameleon can better address local skewness.

A. Index Construction Algorithms

Different index construction strategies have been proposed
for learned indexes, resulting in various data segmentation
results, to fit the diverse data distributions. Fig. 2 illustrates
three representative learned index segmentation strategies,
where the blue lines represent the CDF of the dataset to be
indexed, and the red lines represent the CDFs learned by the
index models.
Bottom-Up. FITing-Tree [10] proposes a bottom-up greedy
algorithm to construct indexes based on a given error thresh-
old. An index model is used for a continuous data segment
until its approximation error exceeds the error threshold.
Another typical example is PGM [8], which constructs optimal
piecewise linear models in O(n) time by minimizing convex
hulls, as plotted in Fig. 2(a). DILI [16] considers both tree
height and leaf model accuracy in its construction process.
Top-Down. Top-down approaches avoid a secondary search in
inner nodes at query time using inner nodes with precise index
models. RMI [6], RS [9] and RUSLI [17] partition intervals
based on the linear model or radix table. The performance of
these indexes relies on the selection of hyper-parameters (e.g.,
the number of levels). PLEX [18] improves the robustness of
RS by replacing the radix table with a radix tree. LIPP [11]
addresses conflicts caused by skewed data through node split-
ting, as plotted in Fig. 2(b). ALEX [7] and CARMI [19] select
the fanout based on a cost model to indirectly adapt to varying
local data distributions, as plotted in Fig. 2(c). Additionally,
Pluggable [20] accelerates index construction and querying
using sampling and model-driven approaches.
Other Frameworks and Strategies. A series of studies [21]–
[27] optimise learned indexes under various hardware and
workload settings. Polyfit [28] is optimized for approximate
range aggregate queries. MR-FT [29] pre-trains a plug-in for
index construction on a set of synthetic datasets. NFL [30]
first transforms the input data distribution into a near-uniform
distribution for batched queries. [31] summarizes methods for
expanding and optimizing learned indexes on disk. SALI [32]
uses evolutionary strategies and lightweight statistical methods

(a) PGM (b) LIPP

(c) ALEX

fanout = 1 fanout = 2 fanout = 4 fanout = 8

Fig. 2. Comparison of segmentation strategies of learned index structures

to enhance the concurrency performance of learned indexes.
Sieve [33] optimizes key-value storage in disk and distributed
scenarios. Tailored [34] employs logarithmic error optimiza-
tion for linear regression problems. RL techniques [35]–[39]
have been used in Database regions. For example, DIC [40]
finds an approximately optimal combination of existing tradi-
tional indexes.
Discussion. As summarized in Table I, top-down algorithms
achieve better query performance due to avoiding searches in
the inner nodes, but existing top-down construction algorithms
are unable to construct the optimal index structure due to their
greedy or heuristic strategies. On the other hand, bottom-up
methods suffer from poor query performance due to errors in
inner nodes. Locally skewed data distribution will lead to an
increase in the model prediction error or search depth, both of
which may cause performance degradation. There is no index
structure can adapt to data with locally skewed distributions.

B. Update Strategy

Existing update strategies [41], [42] for learned indexes can
be categorized into two categories: in-place and out-of-place.
In-Place. ALEX [7], CARMI [19], and TALI [43] use a “gap
array” for their leaf nodes to support data insertions. When
few keys are inserted, only several key sequences are affected.
As the insertion frequency increases, the data distribution may
become skewed. TALI [43] adjusts the index structure based
on the update-distribution. However, the update distribution is
not always known.
Out-of-Place. FITing-Tree [10], PGM [8], and RUSLI [17]
use delta-buffer to process insertions. A key is inserted if and
only if the buffer it belongs to is not full. Compared to the
in-place approach, this approach avoids shifting massive keys.
However, a delta-buffer impacts the query performance of the
index and cannot effectively support unique keys.
Other Algorithms. XIndex [44] handles concurrent writes
without affecting the query performance by leveraging fine-
grained synchronization and a two-phase compaction scheme.
FINEdex [12] utilizes a flattened data structure to construct
independent models and process queries concurrently.
Discussion. Since most learned indexes utilize linear models,
they are unable to closely fit the data distributions with locally
skewed regions. Although using buffers or gap arrays can store

the updated data, they can only alleviate the local adjustments
required by frequent updates to a certain extent. Updates
accumulated in a longer time may cause the actual data
distribution to deviate from the initial data distributions, based
on which the index models have been constructed. The index
models must be retrained to maintain the query efficiency.
Moreover, it is difficult to determine the number of gaps and
where to set the gaps.

III. OVERVIEW OF CHAMELEON

This section presents our index structure, starting with
definitions of a few basic concepts and a problem statement.
We summarize the symbols used in Table II.

TABLE II
NOTATIONS

Notation Description

D, |D| The dataset to be bulk loaded and the size of D
Nij The node at the ith level and jth position

Nij .f The fanout of Nij

Nij .n,Nij .c The quantity of keys and the capacity of Nij

Nij .lk,Nij .uk,Nij .cd The minimum / maximum key and maximum offset of Nij

Definition 1. Offset. Offset refers to the distance between the
predicted storage position P̂ of a key and its actual position
P , i.e., offset = |P̂ − P|.

Definition 2. Conflict Degree. Given a function P(k), two
keys ki and kj conflict if and only if P(ki) equals to P(kj).
For a node Nij with Nij .c slots and a function P(k), the
conflict degree cd = max

i∈[0,Nij .c−1]
{0, |{k ∈ D|P(k) = i}|−1},

i.e., maximum offset.

Consider a mapping function P(k) = 131 · (10/8 · (k −
3)) mod 10, the dataset D={3, 4, 5, 6, 7, 9, 11} and the
capacity of the node is 10. For each key, the predicted positions
P̂ by P(k) are 0, 3, 7, 1, 5, 2, 7. The quantity of keys falling
into each slot is 1, 1, 1, 1, 0, 1, 0, 2, 0, 0. When only one key
exists in a slot, there is no conflict. Therefore, we subtract
1 from the quantity of keys in each slot. This may lead to
negative values, so we further compare the result of subtracting
1 from each slot’s key count with 0 and take the maximum
value. Hence, the conflicts in each slot are 0, 0, 0, 0, 0, 0, 0,
1, 0, 0. Finally, the maximum conflict among all slots is the
node’s conflict degree. Then the conflict degree is 1.

A. The Structure of Chameleon

The overall structure of Chameleon is illustrated in Fig. 3.
The index consists of two types of nodes: inner nodes and leaf
nodes. Each inner node contains a linear model corresponding
to a data interval, and each leaf node contains an Error
Bounded Hashing (EBH) as the model, which aims to address
local skewness.

Inner Nodes. The inner nodes are used for mapping keys to
child nodes, i.e., each node represents a non-overlapping data
partition. The inner nodes store pointers to child nodes and

Root Model

Model 1.1

Model 2.2

Model 1.n…

Model 3.1 Model 3.2

Model 2.1

𝒩ij . 𝑎 =
𝒩ij .f

𝒩ij .uk−𝒩ij .lk

𝒩ij . b = −𝒩ij . a ⋅ 𝒩ij . lk

inner node

leaf node

hash table

Fig. 3. The Chameleon index structure

map keys to the corresponding child nodes. The fanout Nij .f
of an inner node Nij is determined via RL agents (detailed
in Section IV). Since we partition by key intervals, the
predictions of the inner node models are precise, eliminating
the need for secondary search inside an inner node. The index
model used by an inner node Nij is defined as follows:

ID(k) =
Nij .f

Nij .uk −Nij .lk
· (k −Nij .lk) (1)

where k represents an arbitrary key, and ID denotes the rank
of the child node of inner node Nij corresponding to k.

Leaf Nodes. Each leaf node has an EBH with an adaptive-
sized Nij .c to hash dense data more evenly, which distin-
guishes our leaf nodes from those used in existing works.
When performing queries, a hash function is used to efficiently
predict the slot where the query key k is stored. Due to po-
tential hash collisions, the hash function has prediction errors.
Therefore, each leaf node stores a maximum offset Nij .cd of
the EBH to accelerate query processing. Specially, if the linear
scanning process in Nij exceeds [P̂−Nij .cd, P̂+Nij .cd], then
k is not in Nij . Given a hash factor α, the hash function for
a leaf node Nij is defined as follows:

P(k) = α · (Nij .c

Nij .uk −Nij .lk
· (k−Nij .lk)) mod Nij .c (2)

where P̂ represents the position of k in EBH mapped by the
hash function P(k).

B. The Challenge of Chameleon

Local skewness typically occurs at local regions, leading to
lop-sided partition issues. Unlike existing index structures that
address local skewness by splitting downwards, Chameleon
first employs RL to locate segments with local skewness and
uses an EBH as the leaf node models to hash the locally
skewed data. This is because minor changes in the input can
lead to substantial changes in the corresponding hash values,
allowing the hash function to disperse dense data, thereby
effectively reducing the height of the index tree.

A key challenge in addressing the issue of local skewness
is how to measure and identify it, which is particularly
important when there are data updates that may cause such
the locally skewed regions to change. Next, we present a
metric to measure the degree of local skewness as defined
in Definition 3.

Definition 3. Local Skewness. Local Skewness is a
statistic describing the skewness of local data distribu-
tion. Given a sorted dataset D, local skewness lsn =
arctan(1

(|D|−1)2

∑|D|−1
i=1

Mk−mk
ki−ki−1

), π
4≤lsn<π

2 , where ki de-
notes the key located at position i in D. Mk and mk represent
the maximum and minimum keys in D, respectively.

Problem Statement. Given a dataset being bulk loaded D, our
goal is to construct an learned index based on data distributions
(e.g., reducing the height of tree and offset). We also aim to
address local skewness problem based on lsn and cd.

Next, with Fig. 4, we describe the construction process of
Chameleon, using two modules DARE and TSMDP based
on RL (detailed in Section IV), followed by a retraining
module (detailed in Section V). DARE and TSMDP are
RL agents responsible for optimizing different parts of the
index respectively, and collaborate to optimize the entire index
structure. The retraining module triggers TSMDP to refine the
local structure in response to data updates. Specifically, given
a dataset D, we first extract the data distribution information
of the entire dataset (i.e., Probability Density Function (PDF)
of D, |D|, and lsn of D) and input it into DARE. The DARE
agent outputs a matrix of fixed size to determine the fanout
of nodes in the upper h-1 levels, and thus the upper h-levels
of the index is constructed. The fanouts of the non-root inner
nodes for most one-dimension learned indexes are set between
1 and 210, while the fanouts of their root nodes are set between
1 and 220 in order to explore larger space. Similarly, our model
aims to learn the fanouts with 210 and 220 as the upperbounds
of non-root inner nodes and root nodes, respectively. In this
case, the lowerbound of the tree height can be derived to
be ⌈log210(|D|)⌉, which is defined as the value of h. Next,
we extract the data distribution information corresponding to
each node at the h-th level and feed such information into
TSMDP. The TSMDP agent outputs the fanout (may equal 1)
of each node. After the entire index structure is constructed,
a retraining thread periodically invokes the TSMDP agent to
adjust the local structure without blocking queries when there
are data updates that change the local data distributions.

update keys

TSMDP

(2) Fine-tuning with TSMDP

Retraining

𝒟

𝒩00

…

…

𝒩10 𝒩1𝑚 𝒩1𝑛

𝒩22𝒩20 𝒩21

…

(1) Construction with DARE

h
lev

els

…

…

𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩21 𝒩22

𝒩31 𝒩32𝒩30

𝒩20

…

DARE

…

…

𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩21 𝒩22

𝒩31𝒩30

𝒩20

…

(3) Retraining(background thread)

Fig. 4. The Chameleon framework

IV. CHAMELEON INDEX CONSTRUCTION

In this section, we firstly present the construction process of
leaf nodes to resolve local skewness, followed by a tree-based
index construction method called TSMDP based on RL. We
further add a second RL agent named DARE to help reduce the
index construction and model training time through MARL.

A. Resolving local skewness

The index construction process can be considered as a data
partitioning process, and the core problem is to determine
the fanout Nij .f of each node Nij . When Nij .f > 1, data
partitioning will be recursively executed, i.e., Nij forms an
inner node. If Nij .f = 1, the partitioning process ends, i.e.,
Nij is now a leaf node, we insert the data into Nij .

Theorem 1. Given the desired collision probabilities τ and
the quantity of keys in leaf nodes Nij .n, satisfying τ requires
that the node capacity Nij .c ≥ Nij .n−1

− ln(1−τ) .

Proof 1. The probability of node Nij not causing a collision
is: ¯p(Nij .n) = 1 · (1 − 1

Nij .c
)(1 − 2

Nij .c
) . . . (1 − Nij .n−1

Nij .c
).

According to the Taylor series expansion and the limit, it can
be inferred that: lim

−1/Nij .c→0
e
− 1

Nij .c = 1 − 1
Nij .c

. Since 1 −
1

Nij .c
≥ 1 − 2

Nij .c
≥ . . . 1 − Nij .n−1

Nij .c
, we have: ¯p(Nij .n) ≤

(1− 1
Nij .c

)Nij .n−1 ≤ e
−

Nij .n−1

Nij .c . Therefore, the probability of
at least two keys colliding is: p(Nij .n) = 1 − ¯p(Nij .n) ≥

1− e
−

Nij .n−1

Nij .c . Assuming that the desired collision probability

is τ , i.e., p(Nij .n) ≤ τ . Then, 1−e
−

Nij .n−1

Nij .c ≤ τ , and Nij .c ≥
Nij .n−1
− ln(1−τ) . ■

To effectively address the problem of local skewness, we
adaptively adjust the capacity of each leaf node Nij .c based
on Theorem 1 to ensure that each node satisfies the desired τ .
For example, as shown in Fig. 5(a)(b), assuming that N22.n
is 7, τ is 0.45. According to Theorem 1, to satisfy τ ≤ 0.45,
N22.c needs to be at least 10.

3 6 9 4 7 5

…

…

𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩22𝒩20 𝒩21

…

lookup k = 11
𝒩22 . 𝑛 = 7

𝒩22 . 𝑐 = 10

𝒩22 . 𝑐𝑑 = 1

11

scan range

(a) Error bounded hash table (b) Cost computation

k offset

3 0 0 0

4 3 3 0

5 7 7 0

6 1 1 0

7 5 5 0

9 2 2 0

11 7 8 1

(c) The leaf node of Chameleon index

P 11 =7

P P

Fig. 5. Leaf node structure

Once the leaf node capacity N22.c is determined, the hash
function can then be set to P(k) = 131 · (10/8 · (k− 3)) mod
10, where 10 is the node capacity. As shown by the bold
red line in Fig. 5(c), the hash function can effectively scatter
the densely populated keys, thus addressing the issue of local
skewness.

B. Locating the Locally Skewed Regions

1) Motivation: In this section, we use RL to locally skewed
regions. During the index construction process, each inner
node impacts all of its child nodes. Existing Markov Decision
Process (MDP)-based RL algorithms focuses on sequential
decision problems and are not directly applicable to our tree-
based decision process. To address this issue, we propose a
Tree-Structured Markov Decision Process (TSMDP) following
the idea of the Deep-Q-Network (DQN) [45]. Given the dataset
features corresponding to a node Nij as input, TSMDP outputs
the fanout Nij .f of Nij . Next, we formulate the TSMDP
process and then introduce the training process.

2) TSMDP Formulation: We proceed to explain how states
and actions are represented in our model, and then present the
reward signal design, which is particularly challenging.
State space. A state s is the information of a node before
partitioning, which contains PDF, the quantity of keys, and
lsn. Here PDF is represented by buckets of size bT . Therefore,
the size of the state space is bT + 2.
Action space. An action a refers to the node fanout to
be assigned to the node corresponding to the current state.
The action space is a predefined set of discrete values
{ξ0, ξ1, . . . , ξn}.
Transition. Given a state s and an action a, if a = 1,
TSMDP has reached a terminal state and a leaf node will be
constructed. It is worth noting that, due to the characteristics
of the tree-based index structure, the current state s can lead
to multiple next states. Hence, the next state is formed by the
features of the dataset corresponding to all the child nodes
of Nij . Consider the example in Fig. 6 in step (4). TSMDP
gives N20 a fanout of 1, and s0 is a termination state. The
construction algorithm then runs on node N21. For N21, the
fanout is 2, and its next state s′1 is composed of a set of states
{s′10, s′11}. s′10 and s′11 coexist and are both the next states of
s′1, which need to be decided by TSMDP.
Reward function. The reward function evaluates the query
cost and the memory cost of a constructed index given a
state and an action. The reward value indicates the quality
of the selected action in the current state. A reward consists
of two parts: query time reward and memory reward. It can
be expressed as r = −wt · Rt − wm · Rm. Here, wt and wm

represent the weight coefficients for query time reward and
memory reward, respectively. We use Rt to represent the cost
of traversing the tree and secondary searches within leaf nodes,
while Rm represents the memory usage of the nodes after
taking actions. We note that other factors such as the query
distribution can be added to the reward function according to
application requirements.

keys

3

5.1 1.3 1.2 1.1

𝒩00. f = 𝓅0

𝒩10

𝒩00

𝒩11 𝒩12

𝒩22𝒩20 𝒩21

(1)

(2)

(4)

action candidates

(4)

(5)

𝒩10

𝒩00

𝒩11 𝒩12

𝒩22𝒩20 𝒩21

𝒩30 𝒩31
𝒩21

𝒩10 𝒩12

TSMDP(𝓝𝟐𝟎)

(a) DARE (b) TSMDP

𝓅0

M

(3)

terminal state

Mk = 3, mk = 0

… …
0s 1s 2s

1s '
1 0s ' 11s '

argmax (,)
D

a

Q s a

Fig. 6. The Chameleon index construction process via MARL

3) TSMDP Training: We adopt DQN with a technique
known as experience replay where the RL agent’s experience
state, action, reward, and next state (st, at, rt, st+1) is stored
at each time-step t. In each step, the boltzman exploration
strategy [46] is used to choose actions. We implement two
networks, a policy network QT with parameter θ and a target
network Q̂T with parameter θ−, respectively, which makes
TSMDP more stable than using a single network.

Given a batch of transitions (s, a, r, s′), the policy network
parameters θ are updated with a gradient descent step by
minimizing the Mean Absolute Error (MAE) loss. Specifically,
the loss function is:

LT(θ)=
∑

s,a,r,s′

(|r+γ

a−1∑
z=0

wz max
a′
z

Q̂T(s
′
z,a

′
z; θ

−)−QT (s,a;θ)|)

(3)
where γ ∈ (0, 1) denotes a discount factor determining the
importance of future rewards, a′z represents the optimal action
taken by s′z . wz is the weight for s′z , which is the ratio of key
quantity in s′z to key quantity in s.

Note that the target network parameters θ− are only syn-
chronized with the policy network parameters θ every K (a
system parameter) steps and are held fixed at other times.

4) Discussion: Although TSMDP aims to achieve the
global optimal solution, it still has three limitations: (1) Slow
index construction. During the index construction process, we
need to recursively call the TSMDP model to make decisions
for each node, which is time-consuming. (2) High training
overhead. In the training process, each experience includes
PDF for each node and its all child nodes. The process of
calculating Q̂T (s

′, a′) one by one for child nodes using Q̂T is
time-consuming. Meanwhile, the use of a discrete action space
limits our ability to explore a larger action space. (3) When
application requirements change (e.g., the reward function has
changed to prioritize query time over index size, or vice versa),
TSMDP needs to be retrained. In the next section, we present
an optimized Chameleon index to address these issues.

C. Enhancing TSMDP with DARE

We further improve the construction algorithm through
MARL with two RL agents, DARE and TSMDP, where DARE
(Dynamic Reward RL) makes single-step decisions based on
the global data distribution (i.e., the PDF of D, the lsn of
D, and |D|), and then TSMDP fine-tunes based on the local

data distribution, as shown in Fig. 6. To address Limitation (1),
Chameleon only needs to invoke DARE once to construct the
upper h levels of the index, with only local calls of TSMDP for
fine-tuning the lower levels. To address Limitation (2), DARE
uses a single-step decision RL model, which has lower training
overhead, allowing us to explore a large and continuous action
space to find the optimal action. To address Limitation (3), we
propose a dynamic reward function to adapt to dynamic system
constraints without retraining RL agent.

Specially, given a dataset D with the maximum and min-
imum keys Mk and mk, DARE firstly extracts the global
data distribution features. Based on these features, it outputs
a fixed-size parameter matrix M(h− 2, L) and the root node
fanout p0 (the fanout of the root node is a separate output
parameter due to its uniqueness in an index). Here, h denotes
the number of levels, and each row of the matrix M represents
the parameters pi,0, pi,1, ..., pi,L−1 for each non-root inner
node at the i-th level. After obtaining M and p0, we first
calculate the mapping of Nij to position x in M , where
x =

(Nij .lk+Nij .uk)/2−mk
Mk−mk ·(L−1). Following that, the interval

[pi,l, pi,l+1] in M enclosing x is calculated, where l = ⌊x⌋.
Then, we employ piecewise linear interpolation functions to
covert the discrete parameters to continuous values as:

Nij .f = ⌊(x− l) · pi,l+1 + (l + 1− x) · pi,l⌉ (4)

After the upper h-level index is constructed, based on
the index constructed by DARE, TSMDP refines the lower
levels, deciding whether to continue splitting. Here, the index
construction is completed.

As shown in Fig. 6, assuming h = 3, L = 4, the minimum
key mk = 0 and maximum key Mk = 3. In step (1), the
dataset feature is extracted and used as the state for DARE.
In step (2), DARE outputs the root node fanout p0 and a 1×4
parameter matrix M . The root node has three child nodes
due to p0 = 3, where N10.lk = 0 and N10.uk = 1. Thus,
x = (0+1)/2−0

3−0 · 3 = 0.5, and l = ⌊x⌋ = 0. Finally, N10.f =
⌊(0.5− 0) · 1.3 + (1− 0.5) · 5.1 = 3.2⌉ = 3. We formulate an
MDP process for DARE as follows:
Experience. As DARE deals with a single step RL problem,
the experience only consists of state, action and reward.
State space. We also use PDF (represented by a vector of
size bD), |D|, and local skewness lsn to represent a state sD.
Therefore, the size of state space is bD + 2.

Reward. To adapt to changing application requirements, we
propose a Dynamic Reward Function (DRF), expressed as
rD =

∑n
i=1 wi · costi.

Suppose a DQN has been trained to project the high-
dimensional state space and action space to low-dimension
cost space. Given coefficient weights wi (according to some
specific requirements, s.t.,

∑n
i=1 wi = 1) and the costs of

different application specific metrics cost1, cost2, · · · , costn,
DRF can predict the reward rD. The Q-function remains valid
while these weights change.
Action space. Actions aD represent a set of parameters that
determine the fanout of nodes in the upper h − 1 levels. A
larger fanout of the root node is beneficial to improve the
query performance of the learned index. The fanouts of the
root nodes for most existing 1-dimensional learned indexes
are set between 20 and 220 such as ALEX [7]. Therefore, the
fanout of the root node is searched in the range of [20, 220]. For
the inner nodes, the fanout range is set as [20, 210] according
to the existing works. For the (h − 2) · L parameter matrix
of DARE, the size L of each row vector is set to 256. In
order to provide a stable strategy for action selection, DARE
utilizes Genetic Algorithm (GA) [47] as the actor and DQN
as the critic. In this approach, GA uses actions as genes
and QD(sD, aD) as the fitness function for a given state. By
iteratively improving the fitness through numerical mutations
and crossovers of action values, it gradually identifies actions
that are closest to the maximum value, which serves as the
optimal policy. Algorithm 1 outlines the process of outputting
the optimal parameters using GA.

• Population. Since the values in M are finite float values,
we can intuitively treat each value as a chromosome. Each
individual has 1 + (h− 2) · L chromosomes.

• Mutation (Lines 3–4) can be divided into two types. The
first type adds a set of random fanout to generate entirely
new genotypes within the population. The second type
allows GA to make better use of existing high-quality
genes through slight mutations.

• Crossover (Line 5) also can be divided into two types.
The former is multi-point crossover, where a configura-
tion contains 1 + (h − 2) · L chromosomes, and DARE

Algorithm 1: GetOptimizedParameters
input : sD,w
output: aD

1 gens← ∅;
2 for i← 1 to K do
3 gens← gens ∪ X random individual;
4 gens← gens ∪ variations(gens);
5 gens← gens ∪ crossed(gens);
6 rewards← evaluate(gens, sD,w);
7 gens← sort(gens, rewards);
8 gens← gens[: X];
9 if converged then

10 return gens[0];

11 return gens[0];

randomly selects certain chromosomes to pass them to
the offspring. The latter involves performing numerical
crossover within the same chromosome.

• Fitness (Line 6). The GA algorithm provides a root node
parameter p0 and a parameter matrix M for other inner
nodes. Based on these parameters, the query cost and
memory cost of the index are predicted by Q-network.
Subsequently, the predicted value calculated based on
DRF is used as the fitness value.

• Selection (Lines 7–8) process involves retaining a portion
of the highest-fitness genes.

D. Training Chameleon

Algorithm 2 summarizes the training process of the whole
Chameleon. Firstly, we initialize the TSMDP policy network
QT , target network Q̂T , DARE policy network QD, explo-
ration probability er, and exploration termination probability
ϵ (Lines 1–2). er determines the tendency between exploration
and exploitation used in the selection of aD. We use a large
collection of both real and synthetic datasets as the training set.
Subsequently, we randomly select a dataset D from training set
and extract its features as sD in each episode (Lines 3–6). We
randomly generate weights w for the DRF (Line 7), and get the
optimal parameters abest for sD and w based on Algorithm 1
(Line 8). The parameters arandom are randomly generated
(Line 9). To trade-off between exploration and exploitation,
DARE selects a set of parameters aD (Line 10) based on er
which is gradually reduced from 1 to 0 during the training
process. The Chameleon-Index is instantiated via aD and
QT (Lines 11–12). We then train TSMDP QT and DARE QD

(Lines 13–14). Finally, we decrease er and repeat the above
process until ϵ is reached (Line 15). The loss function is:

LD(θD) =
∑

sD,aD,rD

|QD(sD, aD; θD)− rD| (5)

where θD represents the parameter of QD.

Algorithm 2: Train Chameleon
input : Environment of Chameleon-Index
output: QT and QD

1 Initialize QT , Q̂T and QD;
2 er, ϵ← 1, Exploration termination probability;
3 while er > ϵ do
4 for i = 0 to K do
5 D ← A random dataset;
6 sD ← Extract features of D;
7 w ← Generate random weights of DRF;
8 abest ← GetOptimizedParameters(sD,w);
9 arandom ← Generate random parameters;

10 aD = (1− er) · abest + er · arandom;
11 rD ← Instantiate Chameleon-Index(h-1, aD);
12 Refine Chameleon-Index using QT ;
13 QT ← Train QT with Q̂T ;
14 QD ← Train QD;
15 Decrease er;
16 return QT , QD

V. ONLINE RETRAINING FOR UPDATE

Invoking RL models online can result in expensive re-
training overhead. To avoid online retraining when the data
distribution is changed by data updates, an intuitive approach
is to use an additional thread to retrain the index without
blocking queries. This is achieved by employing a locking
mechanism to ensure that the query thread and the retraining
thread do not access the same node simultaneously. However,
node locks require locking and unlocking all nodes along the
query path, significantly reducing query performance.

A. Retraining for Update via RL

To overcome the above issues, we propose a mechanism
for retraining the Chameleon-Index using an interval lock,
which is defined as follows.

Definition 4. Interval Lock. Given the interval
[Nij .lk,Nij .uk) of nodes Nij at the h-th level, an interval
lock is used to ensure that at any given moment, only one
thread can access this interval.

Since the sibling nodes of Chameleon are non-
overlapping, a node can be uniquely represented by a path
from the root node to the node. Based on this observation, we
determine whether an interval is accessed or not using IDs
(ID is computed using Eq 1, where IDs represents the set
of ID along the query path), without checking for overlap.

When keys are inserted or deleted, the bottom-level leaf
nodes usually do not require retraining; they only need to
expand their capacity to handle the changes. If we retraining
the nodes in the index tree that are too close to the bottom-
level, it will inversely increase the cost of retraining. On the
other hand, retraining may be required when a subtree has
a significant change in data distribution. Therefore, we keep
the structure of the upper h-1 levels and only lock the node
of the h-th level (i.e., as plotted in Fig. 7, the green and blue
dashed boxes). Since each interval corresponds to a set of IDs,
we only need to check whether two threads are accessing the
same interval by comparing their IDs. Considering TSMDP
performs well on small-scale datasets, we retrain the local
structure by employing TSMDP as the background thread.

The retraining is periodically executed (every 10s in our
evaluation) and can be blocked by query/update workloads.
Note that we only focus on the concurrency issue be-
tween workloads and the background retraining in this paper.
Query/update workloads are still handled sequentially.

As shown in Fig. 7, node N20 (i.e., IDs(0,0)) is to
be retrained when h=3. Firstly, we check if the interval
[N20.lk,N20.uk] has been accessed by a Query(0,0) thread.
At this point, a Query(0,0) thread is indeed accessing this
interval, so a Query-Lock has been placed on the interval
[N20.lk,N20.uk], and the Retraining(0,0) thread’s access re-
quest is denied. The retraining thread waits for the query
thread to finish and unlock the Query-Lock. The retraining
thread then checks whether the interval [N20.lk,N20.uk] is
still being accessed by the query thread. Now, the query thread
accesses the interval [N2n.lk,N2n.uk] (i.e., IDs(n,1)) and

is no longer accessing the interval [N20.lk,N20.uk], so the
retraining thread can execute. At this point, the retraining
thread adds a Retraining-Lock to the interval [N20.lk,N20.uk]
and performs the retraining operation. After the retraining is
completed, it unlocks the Retraining-Lock. Since the IDs of
the query thread and the retraining thread are different at this
point, indicating that they are not accessing the same interval,
both threads can proceed simultaneously.

Limitations and Assumptions. (1) As the data continues
to update, the index structure gradually deviates from the
optimum. However, when the number of updated data reaches
a certain threshold, any learned index faces complete recon-
struction. At this point, our DARE is triggered to reconstruct
the overall index structure. (2) Since uniform data distribution
is not our design optimization target, we assume that data
distribution of the real datasets always exhibits either large or
small local skewness. These assumptions are reasonable for
most real-world scenarios.

B. Complexity Analysis

Lookup Analysis. The lookup cost is only related to the
height of Chameleon HC and the predicted error of the leaf
nodes. We first analyze the tree height. Since we use MARL
to construct a learned index structure (i.e., reducing HC and
τ), HC is typically 2 to 3 (for datasets of 200M points).
The predicted error of leaf nodes (the error of EBH) can be
adjusted through Theorem 1. The leaf nodes of Chameleon
have an average querying time complexity of O(1). Therefore,
the time complexity of lookup operations is O(HC + 1), as
shown in Table III.

B+Tree, PGM, RS require binary search at inner nodes to
locate the next level node. ALEX, FINEdex adopt a greedy
strategy in constructing indexes, and their tree heights are
higher for locally skewed data. LIPP and DILI perform down-
ward splitting for updates, and their empirical tree heights are
also larger than that of Chameleon for locally skewed data,
as shown in the experimental results in the next section.

…

…𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩20 𝒩21

…

𝒩31𝒩30 …

𝒩2𝑚 𝒩2𝑛

𝒩3𝑛𝒩3𝑚

(1) start Query (0, 0)

(2) check Retraining (0,0)

successfully (0, 0) ≠ (n, 0)

(1) Retraining -Lock (n, 0)

(2) execute Retraining (n,

0)

…

…𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩20 𝒩21

…

𝒩31𝒩30 …

𝒩2𝑚 𝒩2𝑛

𝒩3𝑛𝒩3𝑚

(3) Query-Lock (0, 0)

(4) execute Query(0, 0)

(3) unlock Retraining-Lock (n, 0)

(1) start Retraining (0, 0)

(2) check Query (0, 0)

failed (0, 0) = (0, 0)

…

…𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩20 𝒩21

…

𝒩31𝒩30 …

𝒩2𝑚 𝒩2𝑛

𝒩3𝑛𝒩3𝑚

(3) unlock Query-Lock (0, 0)

(1) start Query(n, 1)

(2) check Retraining (0,0)

successfully (n, 1) ≠ (0, 0)

(3) wait

(4) check Query (0, 0)

successfully (0, 0) = (0, 0)

…

…𝒩10

𝒩00

𝒩1𝑚 𝒩1𝑛

𝒩20 𝒩21

…

𝒩31𝒩30 …

𝒩2𝑚 𝒩2𝑛

𝒩3𝑛𝒩3𝑚

(3) Retraining -Lock (0, 0)

(4) execute Retraining(0, 0)

(3) Query-Lock (n, 1)

(4) execute Query(n, 1)

Fig. 7. The concurrent process of executing queries and index reconstruction

TABLE III
TIME COMPLEXITY ANALYSIS

Index Inner node Leaf node Update

Chameleon1 O(HC) O(1) O(m · τ)
B+Tree O(log |D| · logm) O(logm) O(m)
PGM1 O(HP · logm) O(logm+ b) O(log |D|)
RS O(HR + log T) O(logm) O(|D|)
ALEX O(HA) O(logm) O(m)
LIPP2 O(HL) O(1) O(log2 |D|)
DILI2 O(HD) O(1) O(log2 |D|)
FINEdex O(HF) O(logm+ b) O(m+ b)

1 |D|, m, b, and T represent the dataset size, leaf node capacity, delta-buffer size,
and radix table size, respectively. τ represents conflict rate. H represents the
height of the index.

2 log |D| ≫ HL > HD > HP > HF > HA > HC > HR.

Update Analysis. We focus on the cost of index updates,
which incurs extra overhead for insertions (deletions). Let m
be the leaf node capacity, and each shift has a time complexity
of O(m). Since shift is not triggered by each insertion (dele-
tion), and shifts only occur if there is a conflict. The probability
of conflict is τ , and thus the average update overhead is
O(m · τ). In comparison, for LIPP, the height for the adjusted
tree is O(log |D|), and each level would cost O(|D|) time to
retrain the index models. Thus, the average update time cost of
LIPP is O(log2 |D|). Chameleon achieves lower complexity
for updates than other competitors as summarized in Table III.

VI. EXPERIMENTS

In this section, we present detailed results of our experi-
ments. We implement Chameleon and other indexes using
C++. All experiments are conducted on a 64-bit Ubuntu 22.04
LTS machine equipped with an AMD 7900X CPU, 128GB
DDR5 5200Mhz RAM and an NVIDIA 4070 12GB GPU.
The source code of Chameleon is available1.

A. Experimental Setup

Our experimental setup follows that of the SOSD bench-
mark [2]. We provide a detailed description of the parameters,
datasets, workloads, and baselines.

1) Datasets: Following SOSD, we use two real datasets
(OSMC and FACE) and two synthetic datasets (UDEN and
LOGN). Each dataset consists of 200 million 64-bit keys.

• UDEN is a uniform distribution dataset with a local
skewness of π

4 ;
• OSMC is uniformly sampled from OpenStreetMap with

a local skewness of 2π
5 ;

• LOGN is a lognormal distribution dataset with a local
skewness of 12π

25 ;
• FACE is an upsampled version of a Facebook user ID

dataset [2] with a local skewness of 99π
200 .

2) Workloads: Following other baseline learned indexes,
we use two types of workloads:

1https://github.com/ai4db-study/Chameleon

• Read-only workloads: We bulk load 50M, 100M, 150M
and 200M keys, execute point queries, and report the
average query latency and index size.

• Mixed workloads: we test the update performance with
varying read-write and insert-delete ratios. For instance,
for read-write workloads, we interleave operations to sim-
ulate real-time usage. Specifically, for a workload with a
read-write ratio of 0.2, we perform 8 reads followed by
1 insertion and 1 deletion, and then repeat this cycle.

3) Parameters: The hyper-parameters used in this paper are
shown in Table IV.

TABLE IV
PARAMETERS AND THEIR SETTINGS

Parameters Settings

TSMDP bucket size bT 256
DARE bucket size bD 16384

TSMDP action space {ξ0, ξ1, · · · , ξn} {20, 20, · · · , 210}
The coefficients wt and wm 0.5, 0.5

DARE’s parameter matrix |M | 1 × 256
Discount factor γ 0.9

Learning rate η 10−4

Exploration termination probability ϵ 10−3

4) Baselines: We compare with the following baseline
indexes, using their published source code and default con-
figurations.

• B+Tree is implemented as the current version of STX
B+Tree [48].

• DIC [40] uses RL to construct hybrid indexes.
• RS [9] uses a linear spline to approximate the CDF of

the keys and a radix table to index spline points.
• PGM [8] uses piecewise linear functions as the models

following an error threshold.
• ALEX [7] is an updatable adaptive learned index. It

reserves gaps in data array support efficient insertions.
• LIPP [11] extends the tree structure with models in inner

nodes and exact leaf nodes.
• DILI [16] computes fanout via a bottom-up method and

then constructs index via a top-down method.
• FINEdex [12] employs independent models, linear in-

terpolation optimization, and non-blocking retraining to
enhance query performance.

B. Performance with Read-only Workloads

We report query latency and index size under read-only
workloads of varying cardinalities.

1) Scalability: Fig. 8 reports the query latency and in-
dex size on four datasets with increasing local skewness.
With similar index sizes, Chameleon achieves more stable
query performance across different datasets with different local
skewness compared to other indexes. Particularly, on the FACE
dataset with largest lsn, the query latency of Chameleon
is 3.82×, 2.08×, 2.62×, 3.75×, 3.51×, 2.10×, 4.28×, and
2.78× lower compared to B+Tree, RS, PGM, ALEX, LIPP,

https://github.com/ai4db-study/Chameleon

UDEN OSMC LOGN FACE
0

2

4

6

8

Po
in

t q
ue

ry
 la

te
nc

y
(n

s)
×102

(a) Bulkload 50M
UDEN OSMC LOGN FACE

(b) Bulkload 100M
UDEN OSMC LOGN FACE

(c) Bulkload 150M
UDEN OSMC LOGN FACE

(d) Bulkload 200M

4

2

0

2

In
de

x
si

ze
 (M

B
)

×104Chameleon B+Tree RS PGM ALEX LIPP DILI FINEdex DIC Latency
Chameleon B+Tree RS PGM ALEX LIPP DILI FINEdex DIC Index Size

Fig. 8. Comparison of query latency and index size on static workload

DILI, FINEdex, and DIC, respectively. This advantages at-
tributes to the index structure learned by Chameleon that
better fits the underlying data distribution. Chameleon uses
an EBH as leaf node to address local skewness and limits hash
conflicts based on Theorem 1. On the uniform dataset UDEN,
Chameleon has similar query performance to RS and ALEX.
This is because when the local data distribution is uniform, the
effect of EBH is the same as that of linear functions used by
existing indexes, without particular advantage - we note that
this is not our design optimization target.

2) Effect of Local Skewness: To observe the change in
query performance with respect to local skewness, we gen-
erate uniform datasets and add locally skewed data around
cluster centers with a normal distribution. Using different
variance values, we obtain data with varying levels of local
skewness. Fig. 9 illustrates the query latency of different
indexes relative to that of the B+Tree as local skewness
increases. We observe that, as local skewness grows, the query
latency of Chameleon shows minor change, while that of the
other indexes increase notably. This is because Chameleon
uses EBH to reduce conflicts caused by local skewness and
adaptively adjusts the EBH capacity to mitigate skewness,
ensuring query performance under different scenarios.

3) Index Construction Time: Fig. 10 shows the Index con-
struction times of different indexes on two real datasets. It can
be observed that the index construction time of Chameleon is
higher than those of most indexes. This is because running the
RL agents is time-consuming. DIC and DILI are even slower
to construct. DIC is also RL based, it invokes an RL agent
for each index node, while the DARE agent in our algorithm
reduces the training time by constructing the first h levels
in incrementally. DILI needs to first construct a PGM-like
index structure from bottom to top, and then construct the final

/4 /2
Local skewness

0.0

0.5

1.0

1.5

La
te

nc
y

ra
tio

(a) Bulkload 100M

/4 /2
Local skewness

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

ra
tio

(b) Bulkload 200M

Chameleon B+Tree PGM
ALEX LIPP DILI FINEdex

Fig. 9. Latency ratio varying local skewness

index from top to bottom based on the fanout. Additionally,
as the data size increases and the number of nodes grows, the
construction time of different indexes increases accordingly.

4) Analysis of Index Structures: To validate the effective-
ness of each module proposed in this paper, we evaluate the
indexes equipped with different modules: (1) ChaB uses EBH
to resolve local skewness (but no TSMDP and DARE), (2)
ChaDA – ChaB enhanced with DARE (but no TSMDP), and
(3) ChaDATS – ChaDA with TSMDP. Here, due to space limit,
we only show DILI and ALEX as they have the best query
performance among the baselines as reported in the previous
subsections on locally skewed data. Table V summarizes the
structures of DILI and ALEX, ChaB, ChaDA, and ChaDATS
after bulk loading 200M keys. Since the leaf node of DILI
adopts the structure of LIPP accurate prediction, the maximum
prediction error (i.e., MaxError) and average prediction error
(i.e., AvgError) of its leaf node are 0. It can be observed that
even without TSMDP and DARE, the maximum height (i.e.,
MaxHeight) of ChaB is significantly lower than that of ALEX
and DILI on datasets with higher local skewness, while the
average height (i.e., AvgHeight) is similar to ALEX across
all datasets. This is because DILI always splits downward to
handle the local skewness, resulting in a higher tree height.
ALEX leaf nodes cannot handle the local skewness using the
linear regression model, so as the local skewness increases,
ALEX’s tree height also increases. Chameleon uses EBH
to effectively solve the local skewness and achieve a lower
tree height. The MaxError and AvgError of ChaB are up to
two orders of magnitude smaller than those of ALEX. This is
because as the local skewness increases, the number of data
conflicts in the slots of ALEX leaf nodes increases, leading to
a larger MaxError and AvgError.

Additionally, with the increase of modules, both the num-

40M 80M 120M 160M 200M
Dataset cardinality

0

50

100

150

In
de

x
co

ns
tru

ct
io

n
tim

e
(s

)

(a) OSMC

40M 80M 120M 160M 200M
Dataset cardinality

0

100

200

300

In
de

x
co

ns
tru

ct
io

n
tim

e
(s

)

(b) FACE

Chameleon B+Tree RS PGM
ALEX LIPP DILI FINEdex DIC

Fig. 10. Index construction time

TABLE V
ANALYSIS OF INDEX STRUCTURES

Dataset Index MaxHeight MaxError AvgHeight AvgError #Nodes

UDEN

DILI 7 0 3.1 0 30899734
ALEX 3 2048 3 7.8 774
ChaB 3 237 3 1.18 3030001

ChaDA 3 203 3 0.56 98865
ChaDATS 3 172 3 0.55 101068

OSMC

DILI 8 0 3.1 0 31170708
ALEX 4 2048 2.14 5.91 33232
ChaB 3 95 3 0.71 3030001

ChaDA 3 84 3 0.59 97695
ChaDATS 4 37 3 0.53 9935

LOGN

DILI 6 0 3 0 328290
ALEX 7 16384 2.55 407.03 2098304
ChaB 3 237 3 0.56 3030001

ChaDA 3 211 3 0.52 101213
ChaDATS 4 211 3.01 0.49 97774

FACE

DILI 15 0 4.3 0 68041530
ALEX 7 16384 3.23 385.72 611316
ChaB 3 237 3 0.58 3030001

ChaDA 3 203 3 0.57 95002
ChaDATS 4 152 3 0.54 98445

ber of nodes (i.e., #Nodes), MaxError, and AvgError of the
index decrease, demonstrating the effectiveness of DARE and
TSMDP. These observations demonstrate the efficiency and
robustness of Chameleon across different data distributions,
while validating its ability to handle local skewness.

C. Performance with Mixed Workloads

For mixed workloads, we initialize 40M keys and record the
throughput as the dataset cardinality grows. DIC and RS are
designed for static workloads, and they are highly ineffective
in handling dynamic updates. Therefore, we do not include
them for the following experiments.

1) Effect of Different Read/Write Ratios: Fig. 11 reports the
throughput under different insertion ratios (#writes / (#reads
+ #writes)). Chameleon has the highest throughput on all
datasets, and its performance is not impacted by the inser-
tion ratio. For example, on the FACE dataset, Chameleon
achieves 2.36×, 2.94×, 2.08×, 2.08×, 1.91× and 3.46×
higher throughput than those of B+Tree, PGM, ALEX, LIPP,
DILI, and FINEdex. On the OSMC and UDEN datasets, the
throughput of Chameleon are closer to those of ALEX.
For these two datasets, they have local distributions close to
uniform distributions, making further partitioning impractical,
which is not a setting for which Chameleon is optimized
for. Still, with the increase in insertion ratio, the local skew-
ness of OSMC and UDEN increases, and the throughput of
Chameleon increases accordingly. This further validates the
ability of Chameleon to handle dynamic local skewness.

2) Effect of Different Update Ratio: Fig. 12 reports the
throughput under varying update ratios (#insertions / (#in-
sertions + #deletions)). There is some improvement in the
performance of Chameleon and ALEX as the update ratio
increases from 0 to 0.25. This is because deletions may lead to

0.2 0.4 0.6 0.8 1
(a) UDEN-insertion ratio

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (o

ps
/s

)

×106

0.2 0.4 0.6 0.8 1
(b) OSMC-insertion ratio

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (o

ps
/s

)

×106

0.2 0.4 0.6 0.8 1
(c) LOGN-insertion ratio

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

ps
/s

)

×107

0.2 0.4 0.6 0.8 1
(d) FACE-insertion ratio

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (o

ps
/s

)

×106

Chameleon B+Tree PGM
ALEX LIPP DILI FINEdex

Fig. 11. Throughput comparisons varying read-write ratios

gaps that are just enough to hold a portion of the inserted data,
thereby avoiding frequent rebuilding of the index structure.
However, as the update rate continues to increase, performance
gradually decreases. This is because the updated data distri-
bution starts to deviates from the learned distribution, and the
skewness of the data distribution increases. Importantly, other
index structures are significantly affected by the changing local
skewness of data distribution, while Chameleon is more
adaptable under mixed workloads.

3) Scalability: Fig. 13 presents point query and insertion
(and deletion) latency while batch inserting (deleting) keys of
various sizes. To assess the stability of query performance after
data updates, we use batched workloads to simulate continuous
dense arrival of data updates. The batched workloads involve
inserting 1/4 of the key first, followed by executing point
queries, and this process is repeated until all keys are inserted.
Then, it begins deleting 1/4 of the key, followed by executing
point queries, and this process is repeated until all keys are
deleted. It can be observed that Chameleon maintains a

0 0.25 0.5 0.75 1
(a) UDEN-update ratio

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

ps
/s

)

×107

0 0.25 0.5 0.75 1
(b) OSMC-update ratio

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

ps
/s

)

×107

0 0.25 0.5 0.75 1
(c) LOGN-update ratio

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

ps
/s

)

×107

0 0.25 0.5 0.75 1
(d) FACE-update ratio

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

ps
/s

)

×107

Chameleon B+Tree PGM
ALEX LIPP DILI FINEdex

Fig. 12. Throughput comparisons varying insert-delete ratios

40M 80M 120M 160M
(a) UDEN-num keys inserted

0.0

0.5

1.0

1.5

2.0
Po

in
t q

ue
ry

 a
nd

 in
se

rti
on

 la
te

nc
y

(
s)

40M 80M 120M 160M
(b) OSMC-num keys inserted

40M 80M 120M 160M
(c) LOGN-num keys inserted

40M 80M 120M 160M
(d) FACE-num keys inserted

40M 80M 120M 160M
(e) UDEN-num keys deleted

0.0

0.5

1.0

1.5

2.0

Po
in

t q
ue

ry
 a

nd
 d

el
et

io
n

la
te

nc
y

(
s)

40M 80M 120M 160M
(f) OSMC-num keys deleted

40M 80M 120M 160M
(g) LOGN-num keys deleted

40M 80M 120M 160M
(h) FACE-num keys deleted

Chameleon
Chameleon

B+Tree
B+Tree

PGM
PGM

ALEX
ALEX

LIPP
LIPP

DILI
DILI

FINEdex Lookup
FINEdex Insert/Delete

Fig. 13. The indexes scalability (read and write latency) comparisons on batched workloads

consistently more stable average point query, insertion and
deletion latency compared to the other indexes and is less
sensitive to the frequency of data updates. This is because
Chameleon has a retraining thread that keeps adjusting the
index structure. Moreover, on FACE dataset, Chameleon
achieves significantly lower query latency compared to the
other indexes. This is because FACE exhibits pronounced local
skewness, as discussed earlier.

4) Retraining Time: Fig. 14 illustrates the average insertion
time and average retraining time within it after bulk loading
20M and inserting 180M keys for different indexes. It can
be observed that Chameleon achieves the lowest insertion
and retraining times across all datasets. This attributes to the
scalability of our index structure built with MARL. Addition-
ally, the unordered EBH eliminates sorting operations during
retraining, further reducing the retraining overhead.

Cham
ele

on
PGM

ALEX
LIPP

DILI
0.0

0.5

1.0

Ti
m

e
(

s)

(a) UDEN

average insert time
average retrain time

Cham
ele

on
PGM

ALEX
LIPP

DILI
0.0

0.5

1.0

1.5

Ti
m

e
(

s)

(b) OSMC

average insert time
average retrain time

Cham
ele

on
PGM

ALEX
LIPP

DILI
0.0

0.5

1.0

Ti
m

e
(

s)

(c) LOGN

average insert time
average retrain time

Cham
ele

on
PGM

ALEX
LIPP

DILI
0.0

0.5

1.0

1.5

Ti
m

e
(

s)

(d) FACE

average insert time
average retrain time

Fig. 14. Retraining time comparison and analysis of various indexes

5) Impact of the Retraining Thread: Fig. 15 shows the
impact of the retraining thread on index performance. The
retraining is executed every 10s. It can be observed that,
compared to not using a retraining thread, Chameleon with a
retraining thread achieves an average query latency reduction

of approximately 100ns, for the following reasons. Firstly, the
retraining thread continually adjusts the local structure and
maintains a relatively stable leaf node density as the number
of insertions increases. Secondly, the retraining process for
non-blocking queries avoids a significant number of online
adjustments. Thirdly, our interval locking minimizes the wait
time of the retraining and queries.

Number of data insertions

400

500

600

700

800

La
te

nc
y

(n
s)

no-mthread
mthread

Fig. 15. Query latency comparison with and without multi-threads

VII. CONCLUSIONS

We propose a dynamic learned index for skewed data
based on multi-agent reinforcement learning (MARL) named
Chameleon, which combines tree-based learned index and
hashing to form an adaptive structure. A MARL algorithm is
used to construct of two substructures in a coordinated manner,
which builds an overall highly optimized index structure. A
non-blocking retraining thread is further employed to adjust
the index structure to accommodate frequent data updates.
Chameleon is evaluated on both real and synthetic datasets.
Extensive experimental results verify that Chameleon excels
in both query time efficiency and scalability when faced with
dynamic and locally skewed data distributions.

Acknowledgement. This work is supported by the National
Natural Science Foundation of China (U23B2019, 62072083)
and the Fundamental Research Funds of the Central Uni-
versities (N2216017). Jianzhong Qi is partially supported
by Australian Research Council (ARC) Discovery Project
DP230101534.

REFERENCES

[1] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[2] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann, “SOSD: A benchmark for learned indexes,” NeurIPS
Workshop, 2019.

[3] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska, “Benchmarking learned indexes,” Proc.
VLDB Endow., vol. 14, no. 1, pp. 1–13, 2020.

[4] Z. Sun, X. Zhou, and G. Li, “Learned index: A comprehensive experi-
mental evaluation,” Proc. VLDB Endow., vol. 16, no. 8, pp. 1992–2004,
2023.

[5] D. Comer, “The ubiquitous b-tree,” ACM Comput. Surv., vol. 11, no. 2,
pp. 121–137, 1979.

[6] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in SIGMOD, 2018, pp. 489–504.

[7] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. B. Lomet, and T. Kraska,
“ALEX: An updatable adaptive learned index,” in SIGMOD, 2020, pp.
969–984.

[8] P. Ferragina and G. Vinciguerra, “The PGM-index: A fully-dynamic
compressed learned index with provable worst-case bounds,” Proc.
VLDB Endow., vol. 13, no. 8, pp. 1162–1175, 2020.

[9] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann, “RadixSpline: A single-pass learned index,” in
aiDM@SIGMOD, 2020, pp. 5:1–5:5.

[10] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“FITing-Tree: A data-aware index structure,” in SIGMOD, 2019, pp.
1189–1206.

[11] J. Wu, Y. Zhang, S. Chen, Y. Chen, J. Wang, and C. Xing, “Updatable
learned index with precise positions,” VLDBJ, vol. 14, no. 8, pp. 1276–
1288, 2021.

[12] P. Li, Y. Hua, J. Jia, and P. Zuo, “Finedex: A fine-grained learned
index scheme for scalable and concurrent memory systems,” Proc. VLDB
Endow., vol. 15, no. 2, pp. 321–334, 2021.

[13] T. Gu, K. Feng, G. Cong, C. Long, Z. Wang, and S. Wang, “The RLR-
Tree: A reinforcement learning based R-Tree for spatial data,” Proc.
ACM Manag. Data, vol. 1, no. 1, pp. 63:1–63:26, 2023.

[14] H. Y. Dalsu Choi, H. Lee, and Y. D. Chung, “Waffle: In-memory grid in-
dex for moving objects with reinforcement learning-based configuration
tuning system,” Proc. VLDB Endow., vol. 15, no. 11, pp. 2375–2388,
2022.

[15] Y. Sheng, X. Cao, Y. Fang, K. Zhao, J. Qi, G. Cong, and W. Zhang,
“WISK: A workload-aware learned index for spatial keyword queries,”
Proc. ACM Manag. Data, vol. 1, no. 2, pp. 187:1–187:27, 2023.

[16] P. Li, H. Lu, R. Zhu, B. Ding, L. Yang, and G. Pan, “DILI: A
distribution-driven learned index,” Proc. VLDB Endow., vol. 16, no. 9,
pp. 2212–2224, 2023.

[17] M. Mishra and R. Singhal, “RUSLI: Real-time updatable spline learned
index,” in aiDM, 2021, pp. 1–8.

[18] M. Stoian, A. Kipf, R. Marcus, and T. Kraska, “PLEX: Towards practical
learned indexing,” in PMLR, vol. 229, 2023, pp. 2624–2641.

[19] J. Zhang and Y. Gao, “CARMI: A cache-aware learned index with a
cost-based construction algorithm,” Proc. VLDB Endow., vol. 15, no. 11,
pp. 2679–2691, 2022.

[20] Y. Li, D. Chen, B. Ding, K. Zeng, and J. Zhou, “A pluggable learned in-
dex method via sampling and gap insertion,” CoRR, vol. abs/2101.00808,
2021.

[21] X. Zhong, Y. Zhang, Y. Chen, C. Li, and C. Xing, “Learned index on
GPU,” in ICDE, 2022, pp. 117–122.

[22] H. Lan, Z. Bao, J. S. Culpepper, and R. Borovica-Gajic, “Updatable
learned indexes meet disk-resident DBMS - from evaluations to design
choices,” Proc. ACM Manag. Data, vol. 1, no. 2, pp. 139:1–139:22,
2023.

[23] G. Yang, L. Liang, A. Hadian, and T. Heinis, “FLIRT: A fast learned
index for rolling time frames,” in EDBT, 2023, pp. 234–246.

[24] T. Yu, G. Liu, A. Liu, Z. Li, and L. Zhao, “LIFOSS: a learned index
scheme for streaming scenarios,” World Wide Web, vol. 26, no. 1, pp.
501–518, 2023.

[25] D. Chen, W. Li, Y. Li, B. Ding, K. Zeng, D. Lian, and J. Zhou, “Learned
index with dynamic ϵ,” in ICLR, 2023.

[26] H. Hang and J. Sun, “Enhancing online index tuning with a learned
tuning diagnostic,” in DEXA, vol. 14146, 2023, pp. 197–212.

[27] M. Matczak and T. Czochanski, “Intelligent index tuning using rein-
forcement learning,” in ADBIS, vol. 1850, 2023, pp. 523–534.

[28] Z. Li, T. N. Chan, M. L. Yiu, and C. S. Jensen, “PolyFit: Polynomial-
based indexing approach for fast approximate range aggregate queries,”
in EDBT, 2021, pp. 241–252.

[29] G. Liu, J. Qi, L. Kulik, K. Soga, R. Borovica-Gajic, and B. I. P.
Rubinstein, “Efficient index learning via model reuse and fine-tuning,”
in ICDEW, 2023, pp. 60–66.

[30] S. Wu, Y. Cui, J. Yu, X. Sun, T. Kuo, and C. J. Xue, “NFL: Robust
learned index via distribution transformation,” Proc. VLDB Endow.,
vol. 15, no. 10, pp. 2188–2200, 2022.

[31] H. Lan, Z. Bao, J. S. Culpepper, and R. Borovica-Gajic, “Updatable
learned indexes meet disk-resident DBMS - from evaluations to design
choices,” Proc. ACM Manag. Data, vol. 1, no. 2, pp. 139:1–139:22,
2023.

[32] J. Ge, H. Zhang, B. Shi, Y. Luo, Y. Guo, Y. Chai, Y. Chen, and
A. Pan, “SALI: A scalable adaptive learned index framework based
on probability models,” Proc. ACM Manag. Data, vol. 1, no. 4, pp.
258:1–258:25, 2023.

[33] Y. Tong, J. Liu, H. Wang, K. Zhou, R. He, Q. Zhang, and C. Wang,
“Sieve: A learned data-skipping index for data analytics,” Proc. VLDB
Endow., vol. 16, no. 11, pp. 3214–3226, 2023.

[34] M. Eppert, P. Fent, and T. Neumann, “A tailored regression for learned
indexes: Logarithmic error regression,” in aiDM, 2021, pp. 9–15.

[35] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in AAAI, 2016, pp. 2094–2100.

[36] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A.
Riedmiller, “Deterministic policy gradient algorithms,” in ICML, vol. 32,
2014, pp. 387–395.

[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in ICLR, 2016.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015,
pp. 448–456.

[39] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
NIPS, 2016, p. 901.

[40] Y. L. Sai Wu, H. Zhu, J. Zhao, and G. Chen, “Dynamic index construc-
tion with deep reinforcement learning,” Data Sci. Eng., vol. 7, no. 2,
pp. 87–101, 2022.

[41] C. Wongkham, B. Lu, C. Liu, Z. Zhong, E. Lo, and T. Wang, “Are
updatable learned indexes ready?” Proc. VLDB Endow., vol. 15, no. 11,
pp. 3004–3017, 2022.

[42] J. Ge, B. Shi, Y. Chai, Y. Luo, Y. Guo, Y. He, and Y. Chai, “Cutting
learned index into pieces: An in-depth inquiry into updatable learned
indexes,” in ICDE, 2023, pp. 315–327.

[43] N. Guo, Y. Wang, H. Jiang, X. Xia, and Y. Gu, “TALI: An update-
distribution-aware learned index for social media data,” Mathematics,
vol. 10, no. 23, 2022.

[44] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, and H. Chen,
“Xindex: A scalable learned index for multicore data storage,” in PPoPP,
2020, pp. 308–320.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[46] Y. Achbany, F. Fouss, L. Yen, A. Pirotte, and M. Saerens, “Tuning
continual exploration in reinforcement learning: An optimality property
of the boltzmann strategy,” Neurocomputing, vol. 71, no. 13-15, pp.
2507–2520, 2008.

[47] L. Fenaux, T. Humphries, and F. Kerschbaum, “Gaggle: Genetic algo-
rithms on the GPU using pytorch,” in GECCO, 2023, pp. 2358–2361.

[48] T. Bingmann, “Stx b+ tree,” https://panthema.net/2007/stx-btree/.

https://panthema.net/2007/stx-btree/

	Introduction
	Related Work
	Index Construction Algorithms
	Update Strategy

	Overview of Chameleon
	The Structure of Chameleon
	The Challenge of Chameleon

	Chameleon Index Construction
	Resolving local skewness
	Locating the Locally Skewed Regions
	Motivation
	TSMDP Formulation
	TSMDP Training
	Discussion

	Enhancing TSMDP with DARE
	Training Chameleon

	Online Retraining for Update
	Retraining for Update via RL
	Complexity Analysis

	Experiments
	Experimental Setup
	Datasets
	Workloads
	Parameters
	Baselines

	Performance with Read-only Workloads
	Scalability
	Effect of Local Skewness
	Index Construction Time
	Analysis of Index Structures

	Performance with Mixed Workloads
	Effect of Different Read/Write Ratios
	Effect of Different Update Ratio
	Scalability
	Retraining Time
	Impact of the Retraining Thread

	Conclusions
	References

