
Tailoring the Shapley Value for In-context Example
Selection towards Data Wrangling

Zheng Liang1, Hongzhi Wang1,�, Xiaoou Ding1, Zhiyu Liang1, Chen Liang1, Yafeng Tang1, Jianzhong Qi2
1 School of Computer Science, Harbin Institute of Technology, Harbin, China

2 School of Computing and Information Systems, University of Melbourne, Melbourne, Australia
{lz20, wangzh, dingxiaoou,zyliang,chenliang}@hit.edu.cn, tangyf@stu.hit.edu.cn, jianzhong.qi@unimelb.edu.au

Abstract—Data wrangling (DW) is a fundamental step to
prepare data for downstream mining tasks. Recent studies
explore large language models (LLMs) to form a lightweight
DW paradigm. Such studies typically require prompting an
LLM with a DW task together with a few examples as task
demonstrations (i.e., in-context learning). A problem yet to
be explored is how to select the examples, to maximize task
effectiveness given constraints on the size of the examples. To
fill this gap, we introduce the constrained Shapley value (CSV),
a tailored variant of the Shapley value with a constraint on the
LLM prompt size, to guide example selection. We show that
CSV has desirable properties in example importance estimation.
Using CSV directly for LLM-based DW is still computationally
intractable. We further propose activated contribution (ACSV) as
an unbiased estimation for CSV and sample allocation algorithms
with approximation guarantees. Empirical results show that,
compared with DW examples manually selected by experts, CSV
improves the effectiveness of LLMs for DW tasks including
schema mapping, entity matching, error detection, and missing
value imputation by 5.90% averagly in F1 score, demonstrating
the general applicability of CSV for in-context learning example
selection towards DW tasks.

Index Terms—Data wrangling, In-context example selection,
Shapley value

I. INTRODUCTION

Data wrangling (DW) [1], [2] covers tasks such as trans-
forming data into usable format, detecting/fixing errors in data,
matching similar records/attributes from different sources, and
cleansing dirty data. It enriches individual data records and
reduce data quality issues for downstream mining tasks.

LLM-based DW. Due to its importance, DW has been
extensively studied. Latest studies use large language models
(LLMs), exploiting the commonsense knowledge acquired by
LLMs to obtain lightweight DW solutions over datasets from
a variety of domains. A pioneering work formulates each data
instance for wrangling as a task question to prompt an LLM [3]
– see an entity matching example in Figure 1(a). Following
the in-context learning paradigm, a couple of studies [3], [4]
boost LLM-based DW by adding a few examples as part
of the prompts (i.e., few-shot learning; see an example in
Figure 1(b)). Such solutions are lightweight (assuming a pre-
built LLM), requiring negligible efforts on data labeling [4].

In-context example selection. A gap in the LLM-based
DW studies is how to select the examples to prompt the LLMs,

� Hongzhi Wang is the corresponding author.
Work done when Zheng was visiting the University of Melbourne.

which is referred to as the in-context example selection prob-
lem, or demonstration engineering [6], [7]. Popular solutions
for this problem include retrieval augmented generation (RAG)
methods, topic model methods, and influence-based methods.

RAG methods [8]–[10] measure the similarity (e.g., embed-
ding distance [8], [9]) between candidate examples and the
task question, and select the most similar candidates as the
task examples. Topic model methods [11] view LLMs as topic
models that can infer a task-related latent concept variable θ
from demonstrations, based on which an answer is generated.
Influence-based methods [12]–[14] select the example that
yields the largest performance gap with and without using the
example on a validation dataset.

Limitations of existing solutions. The RAG and topic
model methods only consider the relevance between candidate
examples and task question, ignoring the actual impact of
selected examples on LLM effectiveness. While influence-
based methods examine such impacts, they are costly to run
(especially when there are many examples and a large valida-
tion set to test) and may lead to unstable test performance [13].

Example 1: Take entity matching over the Beer dataset [5]
in Figure 1 as an example. Suppose that the training, validation,
and test subsets each contains 150 entity pairs to be matched,
while each LLM question answering (QA) turn takes at most 8
examples (as done by Fan et al. [7]) for in-context learning. Us-
ing influence-based methods [12]–[14], to compute LLM-based
DW performance for all example sets takes 150 ·

∑8
i=0

(
150
i

)
questions, which translates to over 170,000 years if each ques-
tion takes 1 second to run, and $0.22 billion if each example
costs $0.00004 (ChatGPT rate [15]).

The Shapley value. We fill the gap by studying cost-
efficient example selection for LLM-based DW. We exploit a
technique called the Shapley value (SV) [16], which originates
from cooperative game theory, to help evaluate the joint impact
of a subset of candidate examples to prompt an LLM.

Given a utility function U and a set of players D =
{d1, d2, . . . , dn}, the SV of a player di is defined as:

SV (di) =
1

n

∑
S⊂D\{di}

U(S ∪ {di})− U(S)(
n−1
|S|

) . (1)

Intuitively, each player can be thought of as a candidate
example. The utility function U(S) refers to the reward if a set
(or coalition) S of players cooperate in a game, which can be

mailto: lz20@hit.edu.cn
mailto: wangzh@hit.edu.cn
mailto: dxo@hit.edu.cn
mailto: zyliang@hit.edu.cn
mailto: zyliang@hit.edu.cn
mailto: huhuan18@huawei.com
mailto: huhuan18@huawei.com

(a) Example of entity matching (b) Few-shot LLM-based entity match-
ing

Fig. 1: An example of LLM-based entity matching on the Beer dataset [5]. Two entity pairs d1 and d2 are selected as 2-shot
examples from a training dataset, while Q denotes the entity matching question asked to an LLM.

thought of as the accuracy (or some other performance metric
like the F1 score; same below) of an LLM when the set S of
candidate examples are used as the demonstrations to prompt
the LLM for some DW task. Here, a validation set is used
to compute the accuracy. Then, SV (di) models the additional
contribution to the LLM accuracy if candidate example di is
added to the set of examples to prompt the LLM. We can
prompt the LLM with k examples that have the largest SVs,
where k is an application-oriented constraint, e.g., input size
limit of the LLM or user budget constraint.

SV comes with an approximation error guarantee when the
computation cost is constrained [17]. The SV technique is also
orthogonal to the RAG methods, i.e., one can use RAG as
initial filtering of the candidate examples and SV to refine the
selection of the examples. These properties prompt us to adapt
SV for example selection in LLM-based DW tasks.

Challenges. Direct SV computation for n players (can-
didate examples) is #P-hard [18], calling for effective and
efficient approximations. LLM-based DW poses additional
challenges [17]:

(i) Excessive selected examples: Conventional SV approx-
imation methods may select hundreds of examples, which
may be too large to fit LLM prompting scenarios [19] or
lead to high LLM API call costs and/or decay in LLM
effectiveness [18].

(ii) High example selection costs: The state-of-the-art
(SOTA) SV approximation technique, (ϵ, δ)−approximation,
takes O(n log n) utility function (i.e., U in Equation 1)
computations [20], each of which requires asking the LLM
questions with all validation data, i.e., O(mn log n) LLM
API calls are needed given m validation records, which can
be associated with non-trivial costs when m is large.

Contributions. We address these challenges and tailor SV
for example selection in LLM-based DW, making contribu-
tions as follows:

(i) We model LLM-based DW as a problem of selecting the
top-k examples for prompting an LLM, given constraints on
the number of examples k. We guide example selection with
the constrained Shapley value (CSV), which restricts the SV
computation in Equation 1 by imposing |S| < k.

(ii) We adapt the (ϵ, δ)−approximation algorithm [20] for
CSV approximation, resulting in an algorithm named MCSV.
Due to the restricted size of examples, MCSV reduces the
number of utility function computation from O(mn log n)
to O(m log n). We further propose a method named acti-
vated contribution that enables sharing a sample subset S
for computing the CSV for different candidate examples. We
propose two stratified subset sampling strategies. These lead
to an algorithm named ACSV with O(mn) utility function
computation in theory but more efficient than MCSV in
practice due to the smaller hidden constants.

(iii) Empirically, our ACSV algorithm outperforms all non-
batched prompting algorithms, by up to 5.90% in F1 score
on DW tasks over commonly used data wrangling benchmark
datasets. The ACSV methods demonstrates great potential of
boosting LLM for DW. Combining with batch prompting,
we introduce BCSV, which further boosts the LLM’s ability
on larger datasets, with the F1 score of the SOTA batch
prompting-based DW solution by 4.43%.

II. PRELIMINARIES

Data wrangling is an overall term to describe the process
of transforming raw data into a more usable form. Following
a recent study [3], we focus on DW tasks defined below.

Definition 1. (Entity Matching, EM): Consider a pair of
tables T1 and T2 with a unified schema of l columns
{A1, A2, . . . , Al}, where each row in the tables corresponds
to an entity, and Ai refers to the i-th column, i.e., an attribute
of an entity. Entity matching is a binary classification task that
determines whether a pair of entities (t, t′) ∈ T1×T2 refer to
the same real-world entity.

Definition 2. (Schema Mapping, SM): Consider two groups of
tables T1 and T2, and any random pair of tables T1 ∈ T1 and
T2 ∈ T2 with schemata (i.e., columns) {A1

1, A
1
2, . . . , A

1
l } and

{A2
1, A

2
2, . . . , A

2
r}, respectively. Schema mapping is a binary

classification task that determines whether two attributes A1
i

and A2
j refer to the same real-world property.

Definition 3. (Error Detection, ED): Consider a table T
with l columns {A1, A2, . . . , Al}. Error detection is a binary

TABLE I: Brief Prompt Examples

Task Prompt Example

Entity Matching Determine if ’iPhone 13, Apple, $799’ and ’iPhone 13 Pro, Apple, $999’ refer to the same product.
Error Detection Check if ’Laptop, Dell, $1200, Discount: 120%’ contains any errors.

Missing Value Imputation Infer the brand for ’Smartwatch, [MISSING], $199, Color: Black’ using context.
Schema Matching Attribute A is ’Product Name’. Attribute B is Product Price. Do they refer to the same attribute?”

Data Deduplication Identify if ’Name: John Doe, Number: 123-456-7890’ and ’Name: John Doe, Number: 123-456-7890’ are duplicates.
Data Normalization Normalize ’tableA’ by removing redundant symbols.

classification task that determines whether the value of some
attribute t.Ai of a tuple t ∈ T contains errors, e.g., a value
that deviates from the truth.

Definition 4. (Missing Value Imputation, MVI): Consider
a table T with l columns {A1, A2, . . . , Al}. Missing value
imputation aims to determine the most likely value for an
attribute t.Ai of t ∈ T , which has been originally missing.

Definition 5. (Data Normalization, DN): Consider a table T
with l columns {A1, A2, . . . , Al}. Data normalization aims to
transform the value of each attribute t.Ai from a tuple t ∈ T
to a standard form t.A∗

i according to the requirement of a
downstream data analysis task.

Definition 6. (Data Deduplication, DD): Consider a table T
with a schema of l columns {A1, A2, . . . , Al}, where each row
in the table corresponds to an entity, and Ai refers to the i-th
column, i.e., an attribute of an entity. Data deduplication is
a binary classification task that determines whether a pair of
entities (t, t′) ∈ T refer to the same real-world entity.

Prompt Examples. As DW tasks focus on tabular data, it
is crucial to translate DW examples into prompts for LLMs
to understand the task. We adopt the prompt construction of
some pioneering LLM-based DW work [3], while discarding
truncations and feature selections to ensure a uniform prepro-
cessing. The prompt examples are briefly illustrated in Table
I. Please refer to our technical report [21] for further details.

A. Problem Statement

We study DW using LLMs in a few-shot learning setting,
where the core challenge is to select the examples to form the
input prompt given to an LLM, e.g., ChatGPT.

Problem 1. (LLM Example Selection for DW, LESD):
Given a set of n candidate examples (of some DW task)
D = {d1, d2, . . . , dn}, a budget B, and a constant k (k ≥ 1),
the LESD problem aims to find the optimal subset of candidate
examples D∗ ⊂ D, where:

D∗ = argmaxD′U(D′) s.t. D′ ⊂ D, |D′| ≤ k. (2)

Here, U is a utility function that measures LLM effectiveness
for the task. Each utility function call incurs some cost, and
the total cost of function calls during the optimization process
is constrained by B.

Ideally, U should be computed on the task test set. In
practice, only a training or validation set is available at model
design stage. Thus, we compute U on a validation set V , which

returns the F1 score (or accuracy, depending on the task). Also,
each call of U is a question run on some LLM, and commercial
LLMs like ChatGPT charge a fee for every call to their APIs,
so we define B as a budget for LLM API calls.

Computing U requires asking the LLM m = |V | (i.e., the
size of V) questions. Each question serializes a record from V
with a set of selected examples D′ to be sent to the LLM (as
Figure 1(b) shows). A brute-force enumeration over all subsets
of D of size up to k takes O(mnk) questions.

To reduce the number of questions, we may select examples
with the largest SVs. However, a naive adoption of SV
technique does not offer control over the size of the example
set D∗ selected, also suffering cost issues to compute SV. To
address such issues, we define a “constrained” version of SV.

With the rapid growth of the input buffer on commercial
LLMs, one may consider a “greedy” example selection strat-
egy: crafting as many examples as possible into the LLM input
buffer. However, we empirically show in Figure IV-D that the
setting of k = 5 yields performance similar to tens of examples
and decrease Number of Tokens(NOT) cost. So we stick to
k = 5 in this paper as an economic setting.

B. CSV-Based Problem Formulation

Definition 7. (Constrained Shapley Value, CSV): Given a
set of n candidate examples D = {d1, d2, . . . , dn}, a utility
function U, and a constant k (k ≥ 1), the constrained Shapley
value (CSV) for candidate example di is defined as follows:

CSV (di) =
c

n

∑
S⊂D\{di},|S|<k

U(S ∪ {di})− U(S)(
n−1
|S|

) , c > 0

(3)

The intuition of CSV is as follows. We aim to find the
top-k examples to prompt an LLM. As such, we only need
to find candidate examples that, when added to the set of k
examples from LLM prompting, leads to the maximum utility
gain. Thus, we restrict the size of the set S in Equation 3 to
be k − 1 (such that adding di to it makes a size-k subset). In
Equation 3, c can take any non-zero constant value. Finding
the top-k examples with CSV does not concern the exact value
of c, as long as the same c value is used for CSV calculation
across all examples. We set c = 1 for simplicity.

Properties of CSV. To find the top-k examples to prompt an
LLM for DW, we need a value function F (di) to evaluate the
contribution of a candidate example di to the utility function
U . We use CSV (·) as this value function, for its following
attractive properties for reward allocation (i.e., the process of

assigning the contribution of each candidate example di in a
subset S ∪ {di} ⊂ D to the utility U(S ∪ {di})). We show
that CSV (·) is the only value function that satisfies all such
properties, when |S ∪ {di}| ≤ k.

Proposition 1. (Constrained Shapley Value Uniqueness): For
any “game” (D,U), where U is a utility function that maps
a subset S of players D = {d1, d2, . . . , dn} to a real number:
U(S) → R, if U can only take coalitions (i.e., subset S of
D) containing at most k players (i.e., candidate examples) as
input, CSV (·) is the only value function F (di) that satisfies
the following properties for reward allocation:

Symmetry: Any two candidate examples with equal marginal
contributions to every subset S receive the same reward.
Formally, ∀di, dj ∈ D, if ∀S ⊂ D, |S| < k : U(S ∪ {di}) =
U(S ∪ {dj}), then F (di) = F (dj), where F (di) and F (dj)
are the rewards of di and dj .

Additivity: The utility function value on all players U(D)
can be fully divided among the candidate examples, i.e.,
U(D) =

∑
di∈D F (di).

Balance: For any player di ∈ D playing any two games
(D,F1) and (D,F2) getting reward F1(di) and F2(di), re-
spectively; its reward allocation for the game (D,F1+F2) is
F1(di) + F2(di).

Zero element: A candidate example with zero contribution
to the reward of every subset of D with up to k elements has
a reward of 0. Formally, ∀di ∈ D, if ∀S ⊂ D, |S| < k :
U(S ∪ {di}) = U(S), then F (di) = 0.

Proof. Due to space limit, we put the proof in an online
technical report [21]. Same for the rest of the propositions.

Other example contribution evaluation methods cannot sat-
isfy all four properties simultaneously. For example, influence-
based methods [12]–[14] only satisfy the zero element prop-
erty [22], which may produce misleading example contribution
estimation [22] and hence suboptimal example selections.

Using CSV, solving the LESD problem can be approximated
by solving the following top-k CSV selection problem.

Problem 2. (Top-k CSV selection): Given a set of n candidate
examples D = {d1, d2, . . . , dn}, a budget B, and a constant
size k (k ≥ 1), the top-k CSV selection problem aims to find
a subset D∗ ⊂ D satisfying:

D∗ = {d ∈ D|∀d′ ∈ D \D∗, CSV (d) ≥ CSV (d′)}

s.t. |D∗| = k,
∑
U ′∈U

cost(U ′) ≤ B (4)

The calculation of CSV (d) calls the utility function U
multiple times, denoted as U = {U1, U2, ...}. The total
costs incurred by the utility function calls

∑
U ′∈U cost(U ′)

is constrained by B.

The utility function U computed with a machine learning
model (e.g., an LLM in our case) is not typically concave,
which means that (D,U) is not a superadditive game. Con-
sequently, solutions of Problem 2 are usually only approx-
imations for Problem 1. Theoretical analysis on the solution

quality using SV for example selection when U is non-concave
is an open problem [23]. Similarly, analyzing the theoretical
solution quality of Problem 2 for non-concave utility functions
is worth a separate work. Thus, we leave it for future studies.

Example Ordering. The order of examples also impacts the
performance of the model, but an optimal example order for a
specific LLM task is still an open problem. In this paper, we
adopt the ordering strategy of a recent study [24], arranging
the examples in ascending order of their estimated CSV. (e.g.
CSV (d1) < CSV (d2) in Figure 1)

C. Basic Solution Steps

Our top-k CSV selection algorithms follow the steps below.
Step 1. We take an iterative approach to estimate the CSV of

the candidate examples. In each iteration, we examine LLM
performance using a sampled subset S ⊂ D as in-context
examples on the validation set. The result is used to update
the estimation of CSV (di) for all di ∈ D.

Step 2. Each iteration in Step 1 incurs costs to call the LLM
API. Such costs are accumulated. When the total costs exceed
the cost budget B, we terminate the algorithm and return the
top-k examples with the largest estimated CSV values as D∗.

Step 3. The set D∗ returned by Step 2 are used for the DW
task on the test set to produce the final task output.

This is an iterative process by sampling subsets S ⊂ D,
and more sampled subsets can lead to higher approximation
quality (see Propositions 2, 5, and 6). Meanwhile, there is a
budget B that constrains the number of iterations (and hence
the number of sampled subsets). The key challenge here is
how to better exploit each sampled subset to maximize the
estimation quality, which we will focus on the the next section

III. CSV APPROXIMATION

We first adapt a classic SV approximation technique for
CSV approximation, resulting in an algorithm named MCSV
that takes O(m log n) LLM API calls, in Section III-A. Then,
we present the activated contribution technique, along with
two subset sampling strategies for activated contribution-based
CSV approximation, which leads to an algorithm named ACSV
with O(mn) LLM API calls in theory but highly efficient
in practice, in Section III-B. Finally, we present the BCSV
algorithm for batch processing scenarios in Section III-C.

A. MC-Based Approximation

A classic SV approximation technique uses the marginal
contributions [25]. We adapt it for CSV approximation and
named the adapted algorithm MCSV.

Rewriting CSV (di) based on permutation. We first
introduce the estimation goal of MCSV. Suppose π is a
permutation of {1, . . . , n}, denoted by π = {π1, . . . , πn},
where πi ∈ [1, n], πi ̸= πj ,∀i, j ∈ [1, n], we can rewrite
CSV (di) as:

CSV (di) =
c

n!

∑
π⊂Π

U(πi ∪ {di})− U(πi), c > 0 (5)

In Equation 5, Π are all the n! permutations of {1, . . . , n} each
corresponding to a sequence of candidate examples in D, πi

(a) MCSV (b) ACSV (c) BCSV

Fig. 2: Proposed CSV approximation algorithms for LLM-DW. The examples with top-k estimated CSV values returned by
these algorithms are to be used for LLM in-context learning for DW tasks.

is a permutation (i.e., the corresponding candidate examples)
taken from the first |πi| elements in Π where the next element
is i. The equivalence between Equation 3 and Equation 5
comes from the result of a previous work [26].

The MCSV algorithm. Algorithm 1 summarizes MCSV,
where the estimated CSV of di is denoted by CSV (di),
the number of times that di has been sampled is denoted
by count(di), and the accumulated cost triggered for all the
evaluation of the utility function U is denoted by cost. At start,
both CSV (di) and count(di) are set to 0 for all di ∈ D, while
cost is also initialized to 0 (Line 1).

Algorithm 1 Marginal Contribution-Based Approximation
(MCSV)

Input: Candidate examples D = {d1, d2, . . . , dn}, cost con-
straint B

Output: Examples with top-k CSV: topk(D,CSV) ⊆ D
1: CSV (di)← 0, count(di)← 0 for 1 ≤ i ≤ n, cost← 0;
2: while cost ≤ B do
3: π ← random permutation of k examples in D;
4: for j = 1 to k do
5: CSV (dπj)← CSV (dπj)+U({dπ1 , dπ2 . . . , dπj})−

U0;
6: update(cost);
7: U0 ← U({dπ1

, dπ2
. . . , dπj

})
8: count(dπj

)← count(dπj
) + 1;

9: end for
10: end while
11: for i = 1 to n do
12: CSV (di)← CSV (di)/count(di);
13: end for
14: return topk(D,CSV);

The algorithm then proceeds to sample D and update
the CSV estimations until cost reaches budget B (Line 2).
In each iteration, we take π′ as a random permutation of

the IDs of examples in D, and π is the first k IDs in π′

(Line 3). Figure 2(a) shows an example, where k = 4 and
S = {d1, d3, d7, d9}, while π = 3, 7, 9, 1. Instead of using S
to update the CSV estimation of only one candidate example,
we update k − 1 estimations progressively (Lines 4 to 8),
exploiting the term U(S ∪ {di}) − U(S) in Equation 3. In
iteration j, U(S ∪ {di}) is calculated, which becomes U(S)
of the next iteration (Line 5). As a special case, when j = 1,
U({dπ1

, dπ2
. . . , dπj

}) = U(∅), which corresponds to a zero-
shot LLM call. The above steps save one utility function (that
is, U(S)) evaluation in each iteration. We follow the order of
permutation π during this iterative process. Using the sample
subset in Figure 2(a), the CSV estimations will be updated for
d7, d9, and d1.

When the CSV estimation is updated for a candidate exam-
ple dπj

, we increase count(dπj
) by 1 and update cost to accu-

mulate the LLM API cost triggered by evaluating U (Lines 6
and 7). When budget B is exhausted, the sampling and CSV
estimation process is ended. We average the CSV estimation
CSV (di) by count(di) (Lines 10 to 12). Finally, the top-
k candidate examples in D with the highest estimated CSV
values are returned, denoted by topk(D,CSV) (Line 13).

Algorithm analysis. Due to random sampling and permuta-
tion, Algorithm 1 ensures that the estimation is bounded near
the exact value, as shown in the following proposition.

Proposition 2. (Monte Carlo Marginal Contribution Approx-
imation Quality [27]) According to Hoeffding’s inequality,
given the range r = max(CSV (di)) − min(CSV (di)) of
CSV (di), a CSV estimation error bound ϵ, and a confidence
level 1 − δ, Algorithm 1 requires mr2avl(D)k2

4ϵ2 log 2n
δ API

token costs and mr2

2ϵ2 k log 2n
δ queries to an LLM to ensure

P (|CSV (di) − CSV (di)| ≥ ϵ) ≤ δ, where avl(D) denotes
the average number of tokens in serialized EM examples.

The main difference (i.e., our adaptation) between Algo-
rithm 1 and the classic marginal contribution algorithm [25]

is at Line 3, where we use a permutation of size k instead of
n in the original algorithm, which reduces the running time
costs from O(mn log n) to O(mk log n). Recall that the O(m)
term comes from evaluating U over a validation set of size m.
The term O(log n) comes from the number of permutations to
ensure (ϵ, δ)-approximation, while the term O(n) (and O(k))
comes from the length of each permutation.

Discussion. An issue with the MCSV algorithm is that each
call of the utility function U(S) over a subset S ⊂ D can only
be used for CSV estimation of two candidate examples, due
to the reuse of U0 in Line 5 and Line 7. As such, U(S) could
be repeatedly computed for the same set of S whenever it is
part of the sample from Line 3. We introduce an algorithm to
remove such repetitive computation in the next subsection.

Another classic SV approximation technique is called com-
plementary contributions (CC) [28], which computes pairwise
sampling U(D \ S) − U(S) instead of the marginal contri-
bution (i.e., U(S ∪ {di}) − U(S)) at Line 5 of Algorithm 1.
This modification enables CC sharing among all n candidate
examples (Lines 9 to 11). The issue with the CC algorithm and
pairwise sampling is that D is typically much larger than S,
such that |D \S| can also be much larger than k. These cases
can be difficult to fit an LLM’s input constraint or for the LLM
to follow, or can break the budget constraint B prematurely.
We conduct experiments on a tailored version of CC in Table
III, demonstrating that small tweaks on CC can hardly solve
LLM-based DW. Therefore, we do not consider CC further.

B. AC-Based Approximation

To further reduce the approximation costs, we propose
the concept of activated contribution (AC) and the ACSV
algorithm based on this concept, as illustrated by Figure 2(b).

Rewriting CSV based on activated contribution. Intu-
itively, computing CSV (di) in Equation 3 requires utility
function (U(S)) computation for all possible subsets S ⊂
D, 0 ≤ |S| ≤ k. Based on this observation, we propose an
efficient CSV approximation algorithm (Algorithm 2), follow-
ing another rewrite of Equation 3. We first define a weighted
version of the utility function called activated contribution.

Definition 8. Given a set of candidate examples
D = {d1, d2, . . . , dn} and a subset S ⊂ D, the activated
contribution of S to di is defined as folllows:

AC(S, di) = U(S) · f(S, di), (6)

f(S, di) =

0, if di /∈ S, |S| = k

−1, if di /∈ S, |S| < k
n
|S| − 1, if di ∈ S

(7)

Here, function f(S, di) mimics the activation function in
neural networks (and hence the name of “activated contribu-
tion”). The “weight” f(S, di) for the three different cases are
derived from the definition of CSV (Equation 3) to guarantee
equivalence between the CSV and the average of AC (see our
technical report [21] for a full proof of equivalence).

Proposition 3. (Effectiveness of Activated Contribution Ap-
proximation) Given a set of candidate examples D =
{d1, d2, . . . , dn}, the CSV of di can be computed by the
average of activated contribution:

CSV (di) =
∑

S⊂D,0≤|S|≤k

AC(S, di)(
n
|S|

) (8)

Compared to the marginal contribution, the activated con-
tribution can share the computation of U(S) when computing
AC(S, di) for all n candidate examples instead of repeatedly
computing U(S) for every di (i.e., Line 5 of 1), while it
does not rely on pairwise sampling like the CC technique [28]
discussed above.

With the pioneering non-marginal SV approximation meth-
ods like CC [28] and SVARM [29], please note that we
contribute to non-trivial LLM prompt-specific optimizations of
these methods, instead of the efficiency of non-marginal SV
approximation itself. Such method assumes pairwise coalition
sampled from two distributions to ensure sampling quality.
As a result, it requires non-trivial reconfiguration to adapt to
CSV approximation. AC obtains theoretically guaranteed non-
marginal SV approximation without pairwise sampling. Such
property makes it more flexible and thus more suitable for
variants of Shapley Values like our CSV. In the rest of this
section, we will introduce our approximation alorithm with
AC, a sampling strategy specially tailored for top-k CSV iden-
tification, and a batched CSV approximation technique. These
techniques make the Shapley Value practical and efficient for
real-world LLM-based DW applications.

The ACSV algorithm. We give an AC-based algorithm to
approximate CSV as shown in Algorithm 2. In each iteration,
the algorithm randomly samples a subset S of candidate
examples. The sampling process is conducted with uniform
probability on all subsets (Line 3), and we update the esti-
mated CSV for every candidate example with AC based on
Equations 6 and 7 (Lines 4 to 7). The algorithm terminates
when cost exceeds B, returning examples with top-k largest
approximated CSV values as the result (Lines 8 to 11).

The subset sampling process (Line 3) can be done with
uniform weights on each possible subset. This ensures un-
biased sampling, as CSV is an average of AC. Algorithm 2
then gives an unbiased estimation of CSV (di). We note that
existing intuitive influence-based sampling methods [12]–[14]
are all biased estimations of CSV.
Proposition 4. (Unbiased Estimation of Activated Contribu-
tion Approximation) Given a set of candidate examples D =
{d1, d2, . . . , dn}, Algorithm 2 gives an unbiased estimation of
CSV (di) for every di ∈ D, i.e., ∀di ∈ D : E(CSV (di)) =
CSV (di), where CSV (di) is the estimation of CSV (di)
computed by Algorithm 2.

The uniform sampling in Line 3 can still suffer in efficiency.
Following the stratified sampling idea [28], we adapt the sam-
ple probability of the coalitions to reduce U(S) computation
while retaining the same approximation upper bound below.

Sample allocation w.r.t. deviation minimization. We first
adapt a stratified Shapley value sampling strategy [28] for the

Algorithm 2 Activated Contribution-Based Approximation
(ACSV)

Input: Candidate examples D = {d1, . . . , dn}, cost con-
straint B

Output: Demonstrations with top-k CSV: S =
{dπ1

, ..., dπk
} ⊆ D

1: CSV (di) ← 0 for 1 ≤ i ≤ n; CSVi,j ,mi,j ← 0 for
1 ≤ i, j ≤ n; cost← 0;

2: while cost ≤ B do
3: S ← random subset of D;
4: for i=1 to n do
5: CSVi,|S| ← CSVi,|S|+AC(S, di);mi,|S| ← mi,|S|+

1;update(cost);
6: end for
7: end while
8: for i=1 to n do
9: CSV (di)←

∑k
j=1

CSVi,j

mi,j
;

10: end for
11: return topk(CSV);

CSV, which randomly selects mi samples from Sj to minimize
|CSV (di) − CSV (di)|. Using Hoeffding’s inequality, with
probability 1− δ, we have [30]:

|CSV (di)− CSV (di)| ≤
k−1∑
j=0

|CSVi,j − CSVi,j |

≤
k−1∑
j=0

2r(j + 1)

√
− log δi

2

2mi,j

(9)

mi,j is the number of j-sized subsets containing test record
di during sampling process, i.e., the sample budget allocated
to the j-th layer of di [28].

The Deviation Minimization problem is formulated as:

min

k−1∑
j=0

j + 1
√
mi,j

, s.t.

k−1∑
j=0

mi,j∑
p

len(dπp
) = B (10)

Here, len(·) is a function that returns the number of tokens
LLM cost within dπp

. Directly solving the above problem
is difficult, as it is hard to know mi,j when the samples
are entangled for all candidate examples. We first relax mi,j

using its expectation E(mi,j). By definition of CSV, we have
E(mi,j) = E(mj |di ∈ S, |S| = j + 1). Due to uniform
sampling, the expectation of a candidate example being in a
sample can be computed as E(mi,j) =

j
nmj+1. For a further

relaxation, the LLM budget is considered as the sum of input
and output tokens. In our LESE problem definition, if we need
j examples for each single sample, the expected token cost of
a sample of size j can be estimated with (j + 1) · avl(D).

The relaxed Deviation Minimization problem is as follows:

min

k∑
j=1

j + 1
√
mj

√
n

j
, s.t.

k∑
j=1

mj(j + 1)avl(D) = B (11)

Using the method of Lagrange multipliers, we obtain:

mj =
B 3

√
1
j

avl(D)
∑k

j′=1(j
′ + 1) 3

√
1
j′

(12)

Proposition 5. (AC-based Minimized Deviation Approxima-
tion Quality) With sample allocation for minimized deviation,
Algorithm 2 requires 2r2 log 2

δ

√
n

ϵ2 QA cost (queries to an LLM)

and 2r2avl(D) log 2
δ

√
n

ϵ2

∑k
j=1

(j+1)
3
√
j

API token costs to ensure

P (|CSV (di)− CSV (di)| ≥ ϵ) ≤ δ.

Sample allocation w.r.t. regret minimization. The goal of
top-k CSV selection problem is to select samples with top-k
CSV values. We now model top-k CSV selection as a Multiple
Arm Identification Problem [30], [31], where each CSV is
considered as an arm from a multi-armed bandit, and the
agent needs to identify a subset of the arms corresponding to
some criterion [31]. We adapt the SAR algorithm [31] for our
problem. The challenge here is mapping the sample allocation
of the SAR algorithm to activated contribution, yielding an
applicable CSV approximation algorithm. The mapping result
is shown in the sample allocation, where mj is the number of
j-sized subsets during sampling.

mj =

⌈
n(n− k)

logk(k2 + k)

⌉
(13)

Proposition 6. (AC-based Regret Minimizing Approximation
Quality) With sample allocation towards regret minimization,
the error probability of Algorithm 2 satisfies the following
inequality.

en = P (∪i≤k≤jCSV (di) < CSV (dj)) ≤ 2k2exp(− n− k

8Hlogk
)

where H = maxi∈{1,..,K}i · (|CSV (di) − CSV (di+1)|)−2,
logK = 1

2 +
∑K

i=2
1
i

C. The BCSV Algorithm

We further propose an algorithm named BCSV for batch
processing scenarios. The main idea of BCSV is that, in each
LLM query, we ask the LLM to process β (instead of one)
test records (still with k examples), saving the input cost of
feeding k examples to the LLM for β times.

Following a Retrieval Augmented Generation-based method
named BatchER [7], we use a text embedding-based batching
method to generate test record batches. For each batch, we
compute the L2 distance between the embeddings (generated
by an open-sourced language model RoBERTa [32]) of the test
records and every candidate example. Afterwards, we take the
top-K (K > k) candidate examples that are the most relevant
for each batch, i.e., the top-K nearest neighbor examples to
the test records in a batch. Finally, these top-K candidate
examples are filtered using the ACSV algorithm to derive the
top-k examples for the batch.

On top of this, our BCSV algorithm uses the meta-learning
paradigm to enhance CSV approximation for a new batch
based on CSV results from historical batches.

Meta-learning. Meta-learning [33], or learning to learn,
can capture the task structure and map different task input
(datasets) to certain hyper-parameters or model structures so
as to enable few-shot learning [34]. We aim to reuse CSV
estimation results on historical DW batches to recommend in-
context examples adaptable to a new EM task. To compute
CSV for a target dataset, we combine the CSV estimation
results on historical DW batches using a weighted sum fol-
lowing the idea of the meta-features [35]. A meta-feature
is a vector composed of statistics of a dataset, such as the
entropy or maximal value of an attribute. The cosine similarity
between two meta-features reflects the similarity of the two
corresponding datasets for a machine learning task, which is
selecting top-k CSV examples for LLM-based DW.

Meta-feature-based similarity expectation. Using meta-
features and entity pair embeddings generated by any encoder
(e.g., Ditto [36]), the expected CSV of a candidate example
dj in D is computed as follows:

̂CSV (dj) =

∑
di∈D′ cos⟨D⃗, D⃗′⟩ · l2⟨edi , edj ⟩ · CSV (di)∑

di∈D′ cos⟨D⃗, D⃗′⟩ · l2⟨edi
, edj
⟩

.

(14)
Here, D⃗ is a meta-feature vector of dataset D, l2⟨edi , edj ⟩

is the L2 distance between the embeddings of di and dj , while
CSV (di) is the estimated CSV on example di.

Modeling as a meta-learned muti-arm identification
problem. Given any target dataset, Equation 14 stays as
a linear projection. We model the sampling-based top-k
CSV selection process as a Meta-learned Muti-Arm Identi-
fication (MMI) problem. Given α k-armed visible bandits
{MAB1,MAB2, . . . ,MABα}, an invisible bandit MAB,
a weight vector w ∈ Rα, the aim of MMI is to find an
optimal sampling strategy on {MAB1,MAB2, . . . ,MABα}
within a fixed budget B, such that the regret possibility eN in
Proposition 7 is minimized.

The BCSV algorithm. We propose an algorithm named
BCSV (Algorithm 3), using the ACSV algorithm for each
single batch with uniform budget allocation and meta-learning-
based sample combination. In Algorithm 3, Lines 1 to 3
describe the offline stage, where Line 2 runs the ACSV
algorithm for α times with a uniform budget. In the online
stage (Lines 4 to 6), the algorithm uses meta-feature mapping
to compute each arm of the similarity expectation of MAB
(Line 6), and selects the top-k as the result (Line 7).

Algorithm 3 Batch CSV Approximation (BCSV)

Input: DW record batches {D1, D2, . . .}, budget B
Output: Demonstrations with Top-K ĈSV

1: for Di ∈ D do
2: ACSV (Di, B/α)
3: for dj ∈ D do
4: compute ĈSV dj

with Equation 14
5: end for
6: end for
7: return TopK(ĈSV)

We analyze the error probability of BCSV as follows.
Proposition 7. The error probability of BCSV satisfies:

eN ≤ 2αK2 exp(− n− αK

2α · logK ·Hα

) (15)

where H(i) = maxi∈{1,2,...,n} i·(|CSVπi
−CSVπi+1

|)−2, and
Hα = max1≤i≤α H(i).

Algorithm time costs. From Equation 15, we have:

2aK2 exp(− N − aK

2alogK ·H(a)
) = δ

N = 2alogK ·H(a) · log(2aK
2

δ
) + aK

Therefore, BCSV requires N = an+ 2alogK ·H · log a =
O(n) offline token cost to obtain error comparable with ACSV.

TABLE II: Data Wrangling Datasets.

Type Dataset Size # Attr. SampleSize

Entity Matching

Fodors-Zagats (FZ) 946 6 68
iTunes-Amazon (IA) 540 8 98
Beer 450 4 144
DBLP-ACM (DA) 12363 4 244
DBLP-GoogleScholar (DG) 28707 4 54
Amazon-Google (AG) 11460 3 93
Walmart-Amazon (WA) 10242 5 215

Data Imputation Buy 651 4 234
Restaurant 865 5 254

Error Detection Adult 11001 13 143
Hopstital 1001 19 285

Schema Mapping Synthea 29638 8 52
Data Normalization TableFact 100 5 540
Data Deduplication BPID 1000 5 196

IV. EXPERIMENTS

We mainly test the effectiveness of our algorithms using
gpt-3.5-turbo [37] as the LLM to handle DW tasks including
entity matching, error detection, missing value imputation,
schema matching, data transformation, data deduplication, and
data normalization. In table V, we also report ablation results
on gpt-4o-mini, Llama-2-70b, and Llama-3-7b.
A. Experimental Settings

All experiments were run on a Ubuntu 20.04 server with an
Intel Xeon CPU, 32 GB memory, and a Tesla M40 GPU.

Datasets. We follow a previous study [38] and use the fol-
lowing popular benchmark datasets: (1) the Magellan bench-
mark [39] with seven entity matching datasets; (2) Adult and
Hospital [40] for error detection; (3) Buy and Restaurant [41]
for missing value imputation; and (4) Synthea [42] for schema
mapping. Each labeled dataset is split into training, validation,
and test sets with ratio 3:1:1, following an existing DW
study [38]. The details of DW datasets and the corresponding
sample size are listed in Table II. Note that the sample size
(i.e., number of batched LLM API calls within budget) is
related to not only the size and attributes but also the length
of questions after serialization as described in our technical
report [21].

Competitors. We compare our algorithms MCSV, ACSV
(with the regret-minimizing sampling strategy), and BCSV
with five LLM-based algorithms, and four task-specific SOTA

TABLE III: Overall algorithm performance results in F1 score and Accuracy, where we present both average results and
variance over five reruns. Each entry in the table is split vertically: the top value represents the mean, and the bottom value
(in parentheses) denotes the variance. The average rank is computed by taking performance with N/A as 0 (best results are in
boldface and second best ones are underlined).

Task Dataset Task SOTA LLM-based Ours
Ditto Baran IPM SMAT Binder Sudowoodo Zero Manual SC BatchER CondAcc BestSoFar CC-k MCSV ACSV BCSV

EM

FZ 100.00 N/A N/A N/A N/A N/A 93.30 97.97 95.79 100.00 100.00 97.35 93.02 95.79 100.00 100.00
(0.95) N/A N/A N/A N/A N/A (1.67) (3.21) (4.09) (2.45) (2.98) (6.56) (2.23) (2.17) (1.34) (2.31)

IA 95.65 N/A N/A N/A N/A N/A 62.80 98.11 93.61 96.43 94.34 96.17 94.74 86.30 96.30 96.43
(1.08) N/A N/A N/A N/A N/A (1.94) (4.89) (1.95) (2.30) (2.87) (6.32) (2.04) (2.95) (1.28) (2.09)

Beer 94.37 N/A N/A N/A N/A N/A 85.81 92.23 92.30 96.55 96.55 94.70 88.89 92.85 96.55 96.55
(0.92) N/A N/A N/A N/A N/A (1.76) (5.03) (4.76) (2.82) (1.23) (5.78) (2.32) (2.06) (3.23) (2.30)

DG 95.60 N/A N/A N/A N/A N/A 64.60 70.44 62.36 83.70 66.67 78.52 82.18 68.70 75.02 83.70
(0.99) N/A N/A N/A N/A N/A (1.43) (4.54) (1.78) (2.20) (2.79) (6.23) (1.98) (2.90) (2.25) (2.08)

DA 98.99 N/A N/A N/A N/A N/A 93.50 94.90 93.06 94.96 83.87 93.00 91.89 72.75 86.60 94.96
(0.67) N/A N/A N/A N/A N/A (1.62) (3.87) (4.56) (1.69) (1.32) (5.65) (2.09) (1.98) (2.29) (2.09)

AG 75.58 N/A N/A N/A N/A N/A 54.30 65.40 60.66 62.16 62.16 61.58 59.70 63.41 65.17 65.40
(0.94) N/A N/A N/A N/A N/A (1.91) (3.12) (4.01) (1.34) (1.89) (6.12) (1.92) (2.49) (2.24) (2.67)

WA 86.76 N/A N/A N/A N/A N/A 72.00 82.63 78.53 80.66 84.21 77.22 82.35 82.13 85.63 85.63
(0.83) N/A N/A N/A N/A N/A (2.55) (3.56) (4.34) (1.96) (1.04) (6.45) (4.85) (2.62) (3.21) (2.29)

average 92.42 N/A N/A N/A N/A N/A 75.19 85.95 82.33 87.78 83.97 87.78 83.97 80.27 86.42 88.95

ED
Adult N/A 66.67 N/A N/A N/A N/A 0.00 25.00 41.03 39.25 29.83 30.01 44.69 27.40 47.87 53.80

N/A (0.92) N/A N/A N/A N/A (1.84) (6.23) (4.98) (1.98) (2.31) (6.89) (1.20) (1.69) (3.25) (1.31)

Hospital N/A 87.00 N/A N/A N/A N/A 57.14 80.00 41.38 41.39 50.00 71.37 82.12 76.00 86.67 87.00
N/A (1.30) N/A N/A N/A N/A (1.48) (2.87) (1.99) (2.33) (2.88) (6.31) (1.95) (2.47) (2.23) (1.87)

average N/A 76.84 N/A N/A N/A N/A 28.57 52.50 41.21 40.32 39.92 40.32 39.92 51.70 67.27 71.40

MVI
Buy N/A N/A 96.50 N/A N/A N/A 88.91 89.12 90.47 93.33 90.59 91.89 92.31 91.25 92.30 93.00

N/A N/A (1.32) N/A N/A N/A (1.71) (3.32) (4.21) (1.91) (1.09) (6.59) (1.07) (3.96) (2.27) (1.88)

Restaurant N/A N/A 76.90 N/A N/A N/A 79.26 80.14 75.00 66.67 64.10 76.88 69.21 79.26 80.87 80.87
N/A N/A (1.05) N/A N/A N/A (1.57) (3.78) (4.65) (1.72) (1.38) (6.42) (3.31) (3.59) (4.80) (1.99)

average N/A N/A 86.70 N/A N/A N/A 84.09 85.95 82.33 80.00 77.35 80.00 77.35 85.26 86.68 86.94

SM Synthea N/A N/A N/A 38.50 N/A N/A 0.50 42.86 45.20 45.20 45.20 43.95 44.67 45.20 46.37 46.37
N/A N/A N/A (1.09) N/A N/A (2.19) (3.94) (4.82) (1.87) (1.26) (6.75) (3.38) (2.14) (1.32) (1.10)

DN TableFact N/A N/A N/A N/A 79.19 N/A 70.32 85.10 79.17 N/A 66.00 72.60 80.00 82.00 85.10 86.97
N/A N/A N/A N/A (0.92) N/A (1.45) (2.76) (2.02) (3.38) (1.91) (5.27) (3.99) (1.48) (1.24) (1.07)

DD BPID N/A N/A N/A N/A N/A 78.80 63.24 69.98 68.27 76.94 61.19 68.82 60.01 71.19 75.68 80.02
N/A N/A N/A N/A N/A (1.04) (1.95) (3.23) (2.15) (1.45) (2.96) (5.15) (2.94) (1.91) (2.25) (2.08)

DW avg rank 7.46 11.96 12.29 13.79 12.88 12.96 9.92 6.12 8.33 5.17 7.12 7.00 7.17 7.46 3.92 2.46

algorithms, one for each data wrangling task. The LLM-
based competitor algorithms include: (1) Zero (zero-shot
learning with LLM), which prompts a pre-trained LLM with a
task question without examples; (2) Manual, which prompts
a pre-trained LLM with examples selected by experts [3];
(3) SC [3], which starts with a zero-shot LLM-DW at the train-
ing stage, clusters wrongly predicted candidate examples with
DBSCAN [43], and samples (with probability proportional to
the cluster sizes) k examples from the clusters to perform few-
shot learning on the testing data; (4) BatchER [7] (SOTA
LLM-based entity matching algorithm), which runs few-shot
learning with the top-k candidate examples chosen as the
kNNs for each batch of test EM instances. We adapt BatchER
for Schema Mapping, Data Imputation, and Error Detection
benchmarks with question prompt templates from [3]; and
(5) CondAcc [12], [14], which selects the top-k examples
using an “influence” metric (detailed in Section V). (6) CC-
k [12], [14], selecting the top-k examples by tailoring the CC
Shapley value approximation algorithm through discarding all
candidate subsets with more than k examples. (7) BestSoFar,
which simply selects the k examples with best performance
in multiple random reruns. The task-specific SOTA algo-
rithms (Task SOTA in the result tables) include: (1) en-
tity matching: Ditto [36], (2) error correction: Baran [44],
(3) missing value imputation: IPM [41], (4) schema mapping:
SMAT [42], (5) data normalization: Binder [45], (6) data
deduplication: Sudowoodo [42]. These algorithms use task-
specifc design or highly sophisticated deep learning models

(e.g., RoBERTa [32]) tuned for each task. They typically have
higher accuracy than LLM-based algorithms on their target
tasks, although the LLM-based algorithms are more versatile
and can be applied across different tasks.

Evaluation metrics. We report the F1 score for the error
detection, schema mapping, entity matching, data normaliza-
tion, data deduplication tasks, and accuracy for the missing
value imputation task (where F1 score is irrelevant). As for
efficiency evaluation, we report the algorithm running time,
Number of Tokens (NoT) the LLM takes for input and output,
and the API costs the LLM takes.

Parameter setting. As mentioned Section I, our primary
goal is to design a fine grained prompt example selection
method, e.g., to power example fine-tuning for RAG. Thus, the
prompt examples in the our CSV-based algorithms are selected
from 20 candidate examples sampled using the RAG-based
SC [3] algorithm to reduce the LLM API call costs.

We set k as 5, an economic choice consistent with the setting
in previous LLM prompt example selection studies [3], [7],
[12], [14]. Also, we use US$10 per dataset as the example
selection budget. In each iteration, to save costs, we only ask
the LLM to make DW inference on 200 random examples to
produce an estimation of the performance over the full training
dataset, following [38].

B. End-to-End Performance Results

Comparison against LLM-based algorithms. We first
compare our CSV-based algorithms with the LLM-based DW
algorithms. ACSV outperforms the two automatic example

TABLE IV: Cost results in Time and Number of Tokens.

Metric Task Dataset Task SOTA LLM-based Ours
Ditto Baran IPM SMAT Binder Sudowoodo Zero Manual SC BatchER CondAcc BestSoFar CC-k MCSV ACSV BCSV

Time

EM

FZ 53.86 N/A N/A N/A N/A N/A 165.56 166.45 179.75 115.70 7947.04 3699.87 2434.13 5367.15 1534.71 643.22
IA 26.33 N/A N/A N/A N/A N/A 95.70 101.05 128.95 41.63 2875.14 1908.59 925.17 10299.50 1251.98 686.50
Beer 53.45 N/A N/A N/A N/A N/A 86.79 78.23 97.40 43.83 1188.60 1405.06 1051.46 1755.71 795.32 191.98
DG 3052.18 N/A N/A N/A N/A N/A 180.02 179.52 202.37 3023.33 24173.04 14408.08 11799.48 10233.02 2475.58 525.20
DA 1187.23 N/A N/A N/A N/A N/A 170.49 178.97 200.06 1361.22 18853.12 13098.90 5341.96 7697.81 3524.38 732.51
AG 251.68 N/A N/A N/A N/A N/A 181.62 189.99 219.87 1214.32 17235.38 10775.44 10436.15 15328.93 2774.26 523.02
WA 577.30 N/A N/A N/A N/A N/A 183.40 177.56 195.24 2175.20 15271.83 7389.25 4518.41 12633.89 2493.30 539.90

ED Adult N/A 247.12 N/A N/A N/A N/A 164.39 168.75 179.46 6600.00 40797.04 7443.24 8395.91 7480.65 1376.55 645.48
Hospital N/A 23.09 N/A N/A N/A N/A 145.7 166.07 181.33 1132.78 25359.93 14852.50 3982.54 15129.05 2871.44 771.18

MVI Buy N/A N/A 184.86 N/A N/A N/A 97.74 94.06 104.86 2740.98 50762.01 9105.37 5729.33 2187.81 1229.91 267.67
Restaurant N/A N/A 200.92 N/A N/A N/A 124.99 118.99 135.90 369.83 20466.31 4202.89 6094.32 4301.82 1053.36 632.88

SM Synthea N/A N/A N/A 335.02 N/A N/A 151.77 153.87 170.66 1837.74 46746.29 8220.36 9610.65 12583.38 3630.98 766.82

DN TableFact N/A N/A N/A N/A 270.79 N/A 292.35 238.55 276.98 839.84 17080.96 4548.37 3110.68 2964.32 1418.20 980.69

DD BPID N/A N/A N/A N/A N/A 895.09 194.10 198.06 290.24 1069.02 6240.86 5020.16 1167.48 1285.19 965.39 563.80
average 743.15 135.11 192.89 335.02 270.79 895.09 158.92 161.23 181.44 1877.87 24697.79 17384.17 13002.53 9545.33 2273.80 629.67

NoT

EM

FZ N/A N/A N/A N/A N/A N/A 20626 136906 136801 31576 198643 433607 216276 983037 324890 167989
IA N/A N/A N/A N/A N/A N/A 15037 51007 51229 10257 138784 243788 141919 603996 142170 77526
Beer N/A N/A N/A N/A N/A N/A 4777 19999 25042 10980 99456 52284 49760 217428 55739 31746
DG N/A N/A N/A N/A N/A N/A 18414 202551 217663 1123960 2528464 2043769 11796504 1916785 767133 267005
DA N/A N/A N/A N/A N/A N/A 21026 195148 200978 534488 1350142 1378762 678934 2692517 943799 269672
AG N/A N/A N/A N/A N/A N/A 12829 99204 99809 250272 1033673 925439 475893 982065 202625 135874
WA N/A N/A N/A N/A N/A N/A 13864 136864 141178 279657 1038156 956832 698371 911210 291547 182408

ED Adult N/A N/A N/A N/A N/A N/A 15167 85119 87092 3643811 2612639 1992837 1038474 1448106 568115 236313
Hospital N/A N/A N/A N/A N/A N/A 2681 14858 15768 83839 170932 129384 109432 207025 51344 43099

MVI Buy N/A N/A N/A N/A N/A N/A 5346 52146 56090 201617 145350 278374 123943 526219 158831 71815
Restaurant N/A N/A N/A N/A N/A N/A 5902 18226 18903 105327 254502 284732 183792 244986 185285 62081

SM Synthea N/A N/A N/A N/A N/A N/A 5161 21844 22978 323819 9526258 583920 442940 2044651 329655 80669

DN TableFact N/A N/A N/A N/A N/A N/A 5749 46478 93156 758445 7865648 3675844 1973960 687564 356218 146477

DD BPID N/A N/A N/A N/A N/A N/A 8796 94668 157436 1145785 14979601 4324330 9208521 3847201 532586 244530
average N/A N/A N/A N/A N/A N/A 11736 86156 89461 549967 1591417 1332743 1147232 1064835 335094 135810

selection algorithms, Zero and SC on all four DW tasks and
almost all datasets, with the only exception being the DA
dataset. ACSV also outperforms Manual on average over all
four tasks. This suggests that our ACSV algorithm can even
outperform human expert in the example selection task. ACSV
also yields better example selection than CondAcc which is
an influence-based algorithm. On all twelve datasets, ACSV
has equal or higher F1 (accuracy) scores, where the maximum
gap is again observed on the error detection task.

MCSV also outperforms Zero, while it is close to Manual on
average. This further verifies the effectiveness of CSV-based
example selection. It is outperformed by ACSV, because it is
less effective under a budget constrained setting to exploit the
sampled candidate example subsets to obtain accurate CSV
estimations. BatchER has reported strong results for the entity
matching task, because it follows the RAG paradigm to choose
the top-k candidate examples as the kNNs for each batch of
test instances. Our BCSV algorithm further improves upon
BatchER by replacing its intuitive example coverage method
via task performance-based top-k CSV selection. The variance
in Table III shows that the TaskSOTA methods is far more
stable than most LLM-based methods like BestSoFar, due to
natural randomness of LLM response and example importance
estimation. BCSV and ACSV is relatively the most stable
compared to most LLM-based methods, with F1 scores that are
at least as high as those of BatchER, meeting the promise that
our CSV-based example selection algorithms can be plugged
into existing example selection algorithms to further improve
their effectiveness and robustness. In conclusion, ACSV is
more suitable for data imputation tasks and smaller datasets,
whereas BCSV is a plugin to stabilize and enhance the
performance and scalability for general LLM-DW tasks.

Fig. 3: Critical difference diagram on the F1 score of all data
wrangling tasks under the statistical level of 0.1.

Comparison against task SOTA. We further compare with
the task SOTA algorithms Ditto, Baran, IPM, and SMAT. We
see that ACSV matches the SOTA performance on the missing
value imputation task, while it even outperforms the SOTA
on the schema mapping task. For the entity matching and
error detection tasks, the SOTA algorithms are better, for their
specifically tuned models as mentioned above. Note that the
task SOTA algorithms are data hungry and are computationally
expensive. Even in these tasks, ACSV performs just as well
or even better than the SOTA on some of the datasets (e.g.,
IA and Beer). These results show the strong potential of an
LLM-based solution for the DW tasks. Regarding the average
rank, BCSV and ACSV are ranked significantly higher than
all the others including the second best method, Manual. Task
SOTA methods fail in the ranking as each of them can only
be adapted for one specific DW task.

Critical difference diagram. With statistical level of 0.1,
we run a critical difference diagram based on Wilcoxon test
in Figure 3. On all DW tasks, ACSV outperforms the Manual
method in terms of average rank. Some task SOTA appears to

Fig. 4: Impact of LLM API call costs on F1 score (on the entity matching datasets).

be even worse than MCSV, as they are severely affected by the
DW tasks that they are not designed for scenarios where the
performance is 0. The results show that BCSV is comparable
to Task SOTA, and it outperforms BatchER.

C. Cost and Convergence Analysis

Convergence. CSV is an anytime algorithm, such that given
any API cost/Number of Tokens/Time budget, the algorithm
can stop at that budget and return a feasible approximate
solution. Proposition 2, 5, and 6 ensure that the upper bound
of error probability decreases monotonically with increases in
the budget. Therefore, we focus on the effectiveness instead of
the cost above. Nevertheless, we observe that CSV converges
to optimal performance on DW tasks with a few samples. In
such sense, we report time costs and number of tokens to reach
peak performance to show the applicability of our method.

Cost analysis. We report the time to reach peak per-
formance. BCSV is faster than ACSV by over 3.6× and
MCSV by 15.2× due to sample sharing and meta-learning. We
highlight that LLM APIs can answer questions simultaneously.
Such time can be further accelerated via parallel LLM QA
techniques, which is worth another study, and we leave it for
future work. In such sense, a more sensible comparison would
be on the NoT costs of the LLM-DW algorithms. Table IV
shows that, the NoT of BCSV is 2× smaller than that of
Manual, attributing to example sharing and meta-learning.

D. Ablation Study and Parameter Analysis

Impact of LLMs. To show the impact of the LLMs used, we
further apply our ACSV algorithm with an open-source LLM,
Llama-2-70b. For comparison purposes, we also run SC with
Llama-2-70b. We use SC as a comparison since ACSV uses
the output of SC as input. We report the F1 scores for entity
matching tasks in Table V, and further results on other data
wrangling tasks are in our technical report [21]. We see that
Llama-2-70b in general is less effective than gpt-3.5- turbo for

TABLE V: F1 score Comparison of ACSV and SC with
Llama-2-70b (‘L2’), Llama-2-70b (‘L3’), gpt-4o-mini(‘g4’)
and gpt-3.5-turbo (‘g35’) on the entity matching datasets.

Dataset FZ IA Beer DG DA AG WA
SC (L2) 52.78 73.17 49.05 29.25 54.79 51.63 70.58
SC (L3) 50.28 71.67 48.55 28.75 54.29 51.13 69.08
SC (g35) 95.79 93.61 92.30 62.36 93.06 60.66 78.53
SC (g4) 87.80 94.33 88.94 76.19 96.48 55.69 83.51
ACSV(L2) 78.57 81.82 71.79 56.90 94.49 55.25 75.00
ACSV(L3) 77.07 80.32 70.29 55.40 93.99 54.75 74.50
ACSV(g35) 100.00 96.30 96.55 75.02 86.60 65.17 85.63
ACSV(g4) 100.00 98.18 92.30 81.82 96.58 67.69 86.25

the entity matching task. Importantly, ACSV using Llama-2-
70b also outperforms SC using the same LLM, which again
verifies the effectiveness of our algorithm.

Impact of k. All few-shot example selection methods in
this paper adopts the setting of k = 5. This setting stems
from a pre-experiment shown in Figure 5, where we tested
ACSV over 100 iterations with multiple setting of k on four
smallest DW datasets. For simplicity, the Tvalue is the ratio of
NOT cost w.r.t. average question length. Surprisingly, larger k
doesn’t necessarily leads to better performance. Setting k = 5
gets performance competitive to (or even better than) k = 20,
but saves over 75% NOT(Number of Token) cost.

Impact of budget. We also conduct the experiments to
verify the design choice of CSV sampling methods as shown
in Figure 4. BCSV has better performance compared to the
other two methods, MCSV and ACSVṪhis suggests that by
more careful allocation of samples, it is possible for CSV to
converge at higher performance within low cost. CSV works
better when applied on each of question batches individually,
and the stratified sampling converges faster than other sam-
pling approaches, which aligns with our complexity analysis.

V. RELATED WORK

There are three lines of research closely related to our work.

Fig. 5: F1 Score and Token Requirements(Tvalue) of ACSV
across varying example sizes k(kvalue).

Data wrangling: Data Wrangling contains various sub-
tasks [46] for different applications. In addition to the tasks
we focus on in this paper, data transformation [47], data
cleaning [48], [49], and anomaly detection [50] are also crucial
steps to prepare data for downstream tasks. We are actively
working on applying our methods on these tasks. We briefly
survey the task of Entity Matching, and refer interested readers
to [46] for a detailed survey on other data wrangling tasks.

Entity matching (EM) is a long-standing challenge in data
integration, information retrieval, and natural language pro-
cessing [1]. Using entity attribute similarity as the feature,
machine learning models was later introduced to EM [51],
[52]. Crowd-sourcing [53], [54] and active learning [55],
[56] are exploited to reduce the manual data labeling costs.
More recently, advanced machine learning techniques such as
domain adaption [57], [58] are proposed to address the data
annotation cost issues. Pre-trained language model (PLM)-
based solutions [2], [59]–[61] are the state-of-the-art, capturing
textual attributes with text embeddings. With the rise of large
language models (LLMs), fine tuning [62] or prompting [7]
LLMs have become a new EM paradigm, where in-context
learning [6], [12]–[14] is more widely adopted as a computa-
tional friendly prompting solution.

In-context example selection. In-context learning is a
learning paradigm for LLMs that guides LLMs to generate
answers based on the input context (typically a few task
examples [6]) beyond just a question. A key issue here is how
to select the task examples, i.e., the demonstration engineering
problem [3]. Retrieval augmented generation (RAG) is a
popular strategy, where candidate examples that are most
relevant to the task question are selected as the task exam-
ples [8], [63]. This strategy was used in a baseline algorithm
BatchER [7] compared with in our experiments. Influence-
based methods [12]–[14] selects top-k examples using an
“influence” metric. The influence of an example di, denoted
by inf(di), is the gap between the average utility with and
without di:

inf(di) =
∑

S⊂D\{di},|S|≤K,di∈S

U(S)

N − M
−

∑
S⊂D\{di},|S|≤K,di /∈S

U(S)

M

(16)

Here, N is the total samples, while M is the samples

without di, and |S| = M . Initial studies [38], [62] on LLM
prompting for EM focus on handling probabilistic match-
ing [62] or question & demonstration batching [38]. The for-
mer study does not concern in-context learning, while the latter
uses RAG with heuristic-based similarities or embedding-
based distances for example selection. These studies aim to
reduce LLM API costs like we do, while our Shapley value-
based example selection improves both the effectiveness and
explainability of LLM-based EM.

Shapley value. Shapley value (SV) is a contribution eval-
uation metric from the cooperative game theory [64]. Due to
its balance, symmetry, additivity, and zero element proper-
ties [64], SV has been widely adopted by the data management
community [65], [66]. Exact SV computation is known to
be #P-hard [67], and hence much effort has been spent on
reducing its computational costs. Random permutation [68]
and stratified sampling allocation [69] are the commonly
adopted efficient solutions, reporting promising efficiency re-
sults on tasks such as data debugging and detecting and
training data with negative impacts in LLM models [20] and
machine learning pipelines [16]. Combining Shapley Value
with multiple arm identifications [70], data science tasks like
feature selection [71] has benefit in terms of selecting k items
in an efficient way. Compared to such methods, our method
fills in the gap on scenarios where utility function on certain
coalitions cannot be fully computed. BCSV also adapt Shapley
Value on LLM-DW applications where a single utility function
computation is too computationally expensive, making such
methods suitable for wider range of LLM tasks.

VI. CONCLUSION

We proposed the constrained Shapley value (CSV), a
technique that enables efficient evaluation of the impact of
different examples on the effectiveness of in-context learning
for LLMs over data wrangling tasks. CSV has attractive
properties using reward allocation to guide candidate example
selection, while it is computational intractable. To reduce the
costs of example selection for LLMs, we further proposed to
compute approximate top-k CSV, with an algorithm named
ACSV that has costs linear to the size of the set of candidate
examples. Experimental results on four data wrangling tasks
over commonly used benchmark datasets show that LLMs
using our ACSV algorithm for example selection yields higher
F1 scores than those using SOTA LLM-based algorithms. Even
comparing with specialised models tuned for each different
task, our method yields comparable results in general, and
better results over a number of the datasets tested.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foun-
dation of China (NSFC) (62232005, 62202126), National
Natural Science Foundation of Heilongjiang Province of
China (YQ2024F005), the Postdoctoral Fellowship Program
of CPSF (GZC20233457), and the China Postdoctoral Science
Foundation (2024M764191). Jianzhong Qi is supported by
the Australian Research Council(ARC) Discovery Project DP
240101006 and Future Fellowship FT240100170. We also

acknowledge the support of Yafeng Tang and Siying Chen
throughout our research endeavor.

REFERENCES

[1] L. Getoor and A. Machanavajjhala, “Entity resolution: theory, practice &
open challenges,” Proceedings of the VLDB Endowment, vol. 5, no. 12,
pp. 2018–2019, 2012.

[2] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep entity matching
with pre-trained language models,” Proceedings of the VLDB Endow-
ment, vol. 14, no. 1, pp. 50–60, 2020.

[3] A. Narayan, I. Chami, L. J. Orr, and C. R’e, “Can foundation models
wrangle your data?” Proceedings of the VLDB Endowment, vol. 16,
no. 4, pp. 738–746, 2022.

[4] S. Thirumuruganathan, H. Li, N. Tang, M. Ouzzani, Y. Govind,
D. Paulsen, G. M. Fung, and A. Doan, “Deep learning for blocking in
entity matching: A design space exploration,” Proceedings of the VLDB
Endowment, vol. 14, no. 11, pp. 2459–2472, 2021.

[5] A. Doan, “Deepmatcher datasets,” 2024, accessed: 2024-11-26.
[Online]. Available: https://github.com/anhaidgroup/deepmatcher/blob/
master/Datasets.md#beeradvo-ratebeer

[6] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu,
B. Chang, X. Sun, L. Li, and Z. Sui, “A survey on in-context learning,”
in EMNLP, 2024.

[7] M. Fan, X. Han, J. Fan, C. Chai, N. Tang, G. Li, and X. Du,
“Cost-effective in-context learning for entity resolution: A design space
exploration,” in ICDE, 2024.

[8] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What
makes good in-context examples for GPT-3?” in Workshop on Knowl-
edge Extraction and Integration for Deep Learning Architectures, 2022.

[9] E. Tanwar, M. Borthakur, S. Dutta, and T. Chakraborty, “Multilingual
LLMs are better cross-lingual in-context learners with alignment,” in
ACL, 2023.

[10] T. Sorensen, J. Robinson, C. Rytting, A. Shaw, K. Rogers, A. Delorey,
M. Khalil, N. Fulda, and D. Wingate, “An information-theoretic ap-
proach to prompt engineering without ground truth labels,” in ACL,
2022.

[11] X. Wang, W. Zhu, M. S. Saxon, and W. Y. Wang, “Large language
models are latent variable models: Explaining and finding good demon-
strations for in-context learning,” in NeurIPS, 2023.

[12] T. Nguyen and E. Wong, “In-context example selection with influences,”
arXiv preprint abs/2302.11042, 2023.

[13] Y. Zhang, S. Feng, and C. Tan, “Active example selection for in-context
learning,” in EMNLP, 2022.

[14] T.-Y. Chang and R. Jia, “Data curation alone can stabilize in-context
learning,” in ACL, 2022.

[15] OpenAI, “OpenAI API pricing,” 2024, accessed: 2024-11-26. [Online].
Available: https://openai.com/api/pricing/

[16] B. Karlavs, D. Dao, M. Interlandi, B. Li, S. Schelter, W. Wu, and
C. Zhang, “Data debugging with Shapley importance over end-to-end
machine learning pipelines,” in ICLR, 2024.

[17] H. Liu, X. Mao, H. Xia, J. Lou, and J. Liu, “Prompt valuation based on
Shapley values,” arXiv preprint abs/2312.15395, 2023.

[18] L. S. Shapley, “A value for n-person games,” in Classics in Game
Theory. Princeton University Press, 1953, pp. 307–317.

[19] OpenAI, “ChatGPT (March 14 version),” 2023, accessed: 2024-11-26.
[Online]. Available: https://chat.openai.com/chat

[20] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gürel, B. Li, C. Zhang,
C. J. Spanos, and D. X. Song, “Efficient task-specific data valuation
for nearest neighbor algorithms,” Proceedings of the VLDB Endowment,
vol. 12, no. 11, pp. 1610–1623, 2019.

[21] Z. Liang, H. Wang, X. Ding, Z. Liang, C. Liang, , Y. Tang, and
J. Qi, “Technical report for CSV,” Harbin Institute of Technology,
Tech. Rep., 2024. [Online]. Available: https://github.com/Lorenzo0224/
csv/blob/main/CSV ICDE techrept.pdf

[22] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in NeurIPS, 2017.

[23] M. Mahdavi, Z. Abedjan, R. C. Fernandez, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang, “Raha: A configuration-free error detec-
tion system,” in SIGMOD, 2017.

[24] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, “Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt
order sensitivity,” in ACL, 2022.

[25] W. Zhou, H. Adel, H. Schuff, and N. T. Vu, “Explaining pre-trained
language models with attribution scores: An analysis in low-resource
settings,” in LREC-COLING, 2024.

[26] J. Castro, D. Gmez, and J. Tejada, “Polynomial calculation of the
Shapley value based on sampling,” Computers and Operations Research,
vol. 36, no. 5, pp. 1726–1730, 2009.

[27] S. Maleki, “Addressing the computational issues of the Shapley value
with applications in the smart grid,” Ph.D. dissertation, University of
Southampton, 2015.

[28] J. Zhang, Q. Sun, J. Liu, L. Xiong, J. Pei, and K. Ren, “Efficient
sampling approaches to Shapley value approximation,” Proceedings of
the ACM on Management of Data, vol. 1, no. 1, pp. 1–24, 2023.

[29] J. Derks and H. Peters, “A Shapley value for games with restricted
coalitions,” International Journal of Game Theory, vol. 21, pp. 351–
360, 1993.

[30] P. Kolpaczki, V. Bengs, and E. Hüllermeier, “Identifying top-k players
in cooperative games via Shapley bandits,” in Lernen, Wissen, Daten,
Analysen, 2021.

[31] S. Bubeck, T. Wang, and N. Viswanathan, “Multiple identifications in
multi-armed bandits,” in ICML, 2013.

[32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized bert
pretraining approach,” arXiv, vol. abs/1907.11692, 2019.

[33] H. Nie, X. Han, B. He, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong,
“Deep sequence-to-sequence entity matching for heterogeneous entity
resolution,” in CIKM, 2019.

[34] S. Barhom, V. Shwartz, A. Eirew, M. Bugert, N. Reimers, and I. Dagan,
“Revisiting joint modeling of cross-document entity and event corefer-
ence resolution,” in ACL, 2019.

[35] T. Mu, H. Wang, C. Wang, Z. Liang, and X. Shao, “Auto-CASH: A meta-
learning embedding approach for autonomous classification algorithm
selection,” Information Sciences, vol. 591, pp. 344–364, 2022.

[36] P. Wang, W. Zheng, J. Wang, and J. Pei, “Automating entity matching
model development,” in ICDE, 2021.

[37] OpenAI, “Chatgpt (gpt-3.5-turbo),” 2023, accessed: 2024-11-26.
[Online]. Available: https://www.openai.com

[38] H. Li, L. Feng, S. Li, F. Hao, C. J. Zhang, Y. Song, and L. Chen, “On
leveraging large language models for enhancing entity resolution,” in
ICDE, 2024.

[39] P. Konda, S. Das, A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi,
H. Zhang, J. Naughton, S. Prasad et al., “Magellan: toward building
entity matching management systems over data science stacks,” Pro-
ceedings of the VLDB Endowment, vol. 9, no. 13, pp. 1581–1584, 2016.

[40] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas, “HoloDetect:
Few-shot learning for error detection,” in SIGMOD, 2019.

[41] Y. Mei, S. Song, C. Fang, H. Yang, J. Fang, and J. Long, “Capturing
semantics for imputation with pre-trained language models,” in ICDE,
2021.

[42] J. Zhang, B. Shin, J. D. Choi, and J. Ho, “SMAT: An attention-based
deep learning solution to the automation of schema matching,” in ADBIS,
2021.

[43] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in KDD,
1996.

[44] M. Mahdavi and Z. Abedjan, “Baran: Effective error correction via a
unified context representation and transfer learning,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 1948–1961, 2020.

[45] Z. Cheng, T. Xie, P. Shi, C. Li, R. Nadkarni, Y. Hu, C. Xiong,
D. Radev, M. Ostendorf, L. Zettlemoyer, N. A. Smith, and T. Yu,
“Binding language models in symbolic languages,” 2023. [Online].
Available: https://arxiv.org/abs/2210.02875

[46] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. Paton, “Data wrangling
for big data: Challenges and opportunities,” in EDBT, 2016.

[47] J. Nwokeji and R. Matovu, A Systematic Literature Review on Big Data
Extraction, Transformation and Loading (ETL), 07 2021, pp. 308–324.

[48] X. Ding, H. Wang, J. Su, Z. Li, J. Li, and H. Gao, “Cleanits:
A data cleaning system for industrial time series,” Proc. VLDB
Endow., vol. 12, no. 12, pp. 1786–1789, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p1786-ding.pdf

[49] X. Ding, H. Wang, J. Su, M. Wang, J. Li, and H. Gao, “Leveraging
currency for repairing inconsistent and incomplete data,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 3, pp. 1288–1302, 2022. [Online].
Available: https://doi.org/10.1109/TKDE.2020.2992456

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md#beeradvo-ratebeer
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md#beeradvo-ratebeer
https://openai.com/api/pricing/
https://chat.openai.com/chat
https://github.com/Lorenzo0224/csv/blob/main/CSV_ICDE_techrept.pdf
https://github.com/Lorenzo0224/csv/blob/main/CSV_ICDE_techrept.pdf
https://www.openai.com
https://arxiv.org/abs/2210.02875
http://www.vldb.org/pvldb/vol12/p1786-ding.pdf
https://doi.org/10.1109/TKDE.2020.2992456

[50] Z. Li, X. Ding, and H. Wang, “An effective constraint-based anomaly
detection approach on multivariate time series,” in Web and Big Data -
4th International Joint Conference, APWeb-WAIM 2020, Tianjin, China,
September 18-20, 2020, Proceedings, Part II, ser. Lecture Notes in
Computer Science, X. Wang, R. Zhang, Y. Lee, L. Sun, and Y. Moon,
Eds., vol. 12318. Springer, 2020, pp. 61–69. [Online]. Available:
https://doi.org/10.1007/978-3-030-60290-1 5

[51] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik, “Example-driven
design of efficient record matching queries.” in VLDB, 2007.

[52] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
and J. Widom, “Swoosh: a generic approach to entity resolution,” The
VLDB Journal, vol. 18, pp. 255–276, 2009.

[53] C. Chai, G. Li, J. Li, D. Deng, and J. Feng, “A partial-order-based
framework for cost-effective crowdsourced entity resolution,” The VLDB
Journal, vol. 27, pp. 745–770, 2018.

[54] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, and Y. Park, “Falcon: Scaling up hands-
off crowdsourced entity matching to build cloud services,” in SIGMOD,
2017.

[55] R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan,
“ZeroER: Entity resolution using zero labeled examples,” in SIGMOD,
2020.

[56] V. V. Meduri, L. Popa, P. Sen, and M. Sarwat, “A comprehensive
benchmark framework for active learning methods in entity matching,”
in SIGMOD, 2020.

[57] J. Tu, J. Fan, N. Tang, P. Wang, C. Chai, G. Li, R. Fan, and X. Du,
“Domain adaptation for deep entity resolution,” in SIGMOD, 2022.

[58] J. Tu, X. Han, J. Fan, N. Tang, C. Chai, G. Li, and X. Du, “DADER:
hands-off entity resolution with domain adaptation,” Proceedings of the
VLDB Endowment, vol. 15, no. 12, pp. 3666–3669, 2022.

[59] R. Peeters and C. Bizer, “Dual-objective fine-tuning of BERT for entity
matching,” Proceedings of the VLDB Endowment, vol. 14, no. 10, pp.
1913–1921, 2021.

[60] U. Brunner and K. Stockinger, “Entity matching with transformer
architectures-a step forward in data integration,” in EDBT, 2020.

[61] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang,
“Distributed representations of tuples for entity resolution,” Proceedings
of the VLDB Endowment, vol. 11, no. 11, pp. 1454–1467, 2018.

[62] D. Vos, T. Döhmen, and S. Schelter, “Towards parameter-efficient
automation of data wrangling tasks with prefix-tuning,” in NeurIPS Table
Representation Workshop, 2022.

[63] O. Rubin, J. Herzig, and J. Berant, “Learning to retrieve prompts for
in-context learning,” in NAACL, 2022.

[64] S. Schoch, H. Xu, and Y. Ji, “CS-Shapley: Class-wise Shapley values
for data valuation in classification,” in NeurIPS, 2022.

[65] L. E. Bertossi, B. Kimelfeld, E. Livshits, and M. Monet, “The Shapley
value in database management,” ACM SIGMOD Record, vol. 52, no. 2,
pp. 6–17, 2023.

[66] X. Ding, H. Wang, D. Zhang, J. Li, and H. Gao, “A fair data market
system with data quality evaluation and repairing recommendation,” in
Web Technologies and Applications - 17th Asia-PacificWeb Conference,
APWeb 2015, Guangzhou, China, September 18-20, 2015, Proceedings,
ser. Lecture Notes in Computer Science, R. Cheng, B. Cui, Z. Zhang,
R. Cai, and J. Xu, Eds., vol. 9313. Springer, 2015, pp. 855–858.
[Online]. Available: https://doi.org/10.1007/978-3-319-25255-1 70

[67] X. Deng and C. H. Papadimitriou, “On the complexity of cooperative
solution concepts,” Mathematics of Operations Research, vol. 19, no. 2,
pp. 257–266, 1994.

[68] J. Castro, D. Gómez, and J. Tejada, “Polynomial calculation of the
Shapley value based on sampling,” Computers & Operations Research,
vol. 36, no. 5, pp. 1726–1730, 2009.

[69] J. Neyman, “On the two different aspects of the representative method:
the method of stratified sampling and the method of purposive selection,”
in Breakthroughs in Statistics: Methodology and Distribution. Springer
New York, 1992, pp. 123–150.

[70] S. Bubeck, T. Wang, and N. Viswanathan, “Multiple identifications
in multi-armed bandits,” in Proceedings of the 30th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, S. Dasgupta and D. McAllester, Eds., vol. 28,
no. 1. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 258–265.
[Online]. Available: https://proceedings.mlr.press/v28/bubeck13.html

[71] S. Cohen, E. Ruppin, and G. Dror, “Feature selection based on the
shapley value.” 01 2005, pp. 665–670.

https://doi.org/10.1007/978-3-030-60290-1_5
https://doi.org/10.1007/978-3-319-25255-1_70
https://proceedings.mlr.press/v28/bubeck13.html

	Introduction
	Preliminaries
	Problem Statement
	CSV-Based Problem Formulation
	Basic Solution Steps

	CSV Approximation
	MC-Based Approximation
	AC-Based Approximation
	The BCSV Algorithm

	Experiments
	Experimental Settings
	End-to-End Performance Results
	Cost and Convergence Analysis
	Ablation Study and Parameter Analysis

	Related Work
	Conclusion
	References

