
Noname manuscript No.
(will be inserted by the editor)

GOAL: A Clustering Based Method for the Group
Optimal Location Problem

Fangshu Chen · Jianzhong Qi ·
Huaizhong Lin� · Yunjun Gao ·
Dongming Lu

Received: 21 Mar 2017
Revised: 27 Jul 2018
Accepted: 15 Sep 2018

Abstract Optimal location problems are important problems and are par-
ticularly useful for strategic planning of resources. However, existing studies
mainly focus on computing one or k optimal locations. We study the Group
OptimAl Location (GOAL) problem, which computes a minimum set of loca-
tions such that establishing facilities at these locations guarantees that every
facility user can access at least one facility within a given distance r ∈ R+.
We propose two algorithms, GOAL-Greedy and GOAL-DP, to first solve the
problem in the Euclidean space. These two algorithms are supported by a
clustering based method to compute an initial solution of the problem, which
yields an upper bound of the number of locations needed to solve the prob-
lem. We propose a grid partitioning based strategy to refine the initial solution
and obtain the final solution. We further extend our algorithms to road net-
works. We perform extensive experiments on the proposed algorithms. The
results show that the proposed algorithms can solve the problem effectively
and efficiently in both Euclidean spaces and road networks.

Keywords Location selection · Clustering · Grid partition · Road network

Fangshu Chen
The College of Computer Science and Information Engineering, Shanghai Polytechnic Uni-
versity, China, 201209.
E-mail: youyou chen@foxmail.com
Jianzhong Qi
School of Computing and Information Systems, University of Melbourne, Australia, 3000.
E-mail: jianzhong.qi@unimelb.edu.au
Huaizhong Lin, Yunjun Gao, Dongming Lu
The College of Computer Science and Technology, Zhejiang University, China, 310000.
E-mail: {linhz, gaoyj, ldm}@zju.edu.cn
This work is partially done when Fangshu is visiting the University of Melbourne.

2 Fangshu Chen et al.

1 Introduction

Optimal location problems have attracted on-going research efforts in the
database community since Zhang et al. [35] introduced the Optimal Location
(OL) query. An OL query considers two spatial point sets: a set P representing
facilities (or service sites) and a set O representing clients. The query objective
is to identify a location (or region) p, such that a new facility built at p can
optimize a certain cost metric (e.g., the average) defined on the distances be-
tween the facilities and the clients. OL queries have various applications such
as resource allocation, facility location selection, etc.

Existing studies mainly focus on computing a fixed number of optimal
locations (e.g., 1 or k). Few have studied the problem of computing a set of
optimal locations to provide a full coverage to the clients. Xu et al. [33] study
the group location selection queries to compute a set of locations to cover the
clients. They consider clients with uncertain locations, and their goal is to
cover the clients with a certain probability.

EC1

EC2

Fig. 1 Motivating Example: EC1 and EC2 represents two emergency centers,the other
buildings represent residential buildings that need to be covered within a certain distance

We study a group location problem where client locations are certain: Given
a constant r ∈ R+ representing the coverage radius of a facility and a client
set O, we compute a minimum set of locations needed such that establishing
facilities at these locations can cover all the clients in O. Here, we say that a
facility covers a client if their distance does not exceed the coverage distance
r. We call this problem the Group OptimAl Location (GOAL) problem.

The GOAL problem has various applications. For example, when setting
up emergency centers in an area hit by a natural disaster, e.g., an earthquake,
the emergency centers should be within a reachable distance to everyone. Our
GOAL problem can help find out the minimum number of emergency centers
needed and where to place them to cover the people in the area. This example
is illustrated in Fig. 1, where two emergency centers EC1 and EC2 are needed

GOAL: A Clustering Based Method for the Group Optimal Location Problem 3

r

O1

O3

O4

O5

O6

O8
O7

O2

(a) The initial data set

r

p3pp33 o8

o7

p2p
o5

o6
p1p1

o1
o4

o3

o2

(b) Clustering result

p1pp11 p2p

p3pp3

o1
o4

o5

o6

o8

o7

o2

o3

(c) Candidate coverage sets

p1pp11

p3pp3

o1
o4

o5

o6

o8

o7

o2

o3

(d) A possible result

Fig. 2 Example of the GOAL problem in Euclidean space

to cover all the residential areas nearby, and the circles represent the area
covered. This can also be thought of as a scenario where a telecommunication
service provider is to decide where to set up new base stations for the nearby
users. Note that we assume an infinite facility capacity in this study. In reality,
an emergency center or a base station can only serve a limited number of
people. In such case, we can run our algorithms in the more dense regions
with a smaller coverage radius in a divide-and-conquer manner, until each
region has a sufficiently small population that can be served by a facility. The
above problem can be formulated as a GOAL problem as shown in Fig. 2(a),
where the clients are represented by a set O = {o1, o2, o3, o4, o5, o6, o7, o8}. A
solution of the problem is shown in Fig. 2(d), where the clients are grouped into
two coverage sets denoted by CS1 and CS2, each enclosed by a circle with the
radius being the coverage radius r and the center being the geometric center of
the set of clients, which are small triangles p1, p2. Establishing an emergency
center (base station) at p1, p2 can provide a full coverage to all clients. As
shown by the dashed circles, moving any circle slightly may still guarantee
that all clients are covered. Thus, the problem solution may not be unique.
However, it is clear that no single circle with radius r can cover all the clients,
and 2 facilities are the minimum to provide a full coverage.

4 Fangshu Chen et al.

In this paper, we are interested in finding this minimum number, and one
of the solutions with this minimum number. The overall procedure of our
algorithms is: 1) First run a clustering algorithm to obtain an upper bound
on the number of disjoint subsets needed to fully cover the data set where
each cluster can be enclosed by an r-radius circle, as shown in Fig. 2(b), there
are three clusters with centers p1, p2, p3. Notice that, we must guarantee that
the distance between a client point to its cluster center is smaller than r
in this step. The clusters form our initial problem answer with their centers
as coverage set centers and the radius is r. Figure 2(c) illustrate the initial
coverage sets derived from clustering; 2) Second, we apply a two-stage merging
procedure to further refine the coverage sets obtained. The first stage uses
a grid to partition the data space and merges coverage sets in nearby grid
cells. The second stage further merges the coverage sets through examining
different pairs of coverage sets. Two strategies are used – greedy and dynamic
programming – to reduce the number of pairs of coverage sets to be considered,
resulting in two algorithms GOAL-Greedy and GOAL-DP, respectively, and
the final result after merging is shown in Fig. 2(d), the answer set is CS1 =
{o1, o2, o3, o4, o5} and CS2 = {o6, o7, o8}.

The GOAL problem is NP-hard, as shown by Xu et al. [33]. Intuitively,
the problem involves generating every subset of O that can be enclosed in a
circle with radius r and selecting the combination of the minimum number
of disjoint subsets that can cover O, which can be reduced to the set cover
problem. In Fig. 2 (a), there are 30 candidate subsets: {o1}, {o2}, ..., {o8};
{o1, o2}, {o1, o3}, ..., {o7, o8}; {o1, o2, o3}, {o1, o2, o4}, {o1, o3, o4}, ..., {o6, o7, o8};
{o1, o2, o3, o4}, {o5, o6, o7, o8}. Generating these subsets on n clients by enu-
meration takes O(2n) time, which is impractical.

Our contributions are summarized as follows.

– We are the first to study the group optimal location selection (GOAL)
problem in both Euclidean spaces and road networks where the data object
locations are certain.

– We estimate the upper bound of the number of locations needed to solve
the problem which can reduce the searching space significantly.

– We propose a grid partitioning based method to refine the initial answer
obtained by clustering. Two algorithms GOAL-Greedy and GOAL-DP are
proposed to compute the final answer based on the grid partitioning in
Euclidean space. The algorithms are further extended to solve the GOAL
problem in road networks.

– We conduct extensive experiments with both real and synthetic data sets
to demonstrate the efficiency and effectiveness of the proposed algorithms.
The experimental results show that the proposed algorithms outperform
the baseline algorithms significantly.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 formulates the GOAL problem. Section 4 describes the algo-
rithms for GOAL in Euclidean space and road networks. Section 5 analyzes

GOAL: A Clustering Based Method for the Group Optimal Location Problem 5

the algorithm correctness and complexity. Section 6 presents the experimental
results, and Section 7 concludes the paper.

2 Related Work

2.1 Optimal Location Queries

Zhang et al. [9] first introduced the optimal location (OL) query to the database
community. Xiao et al. [32] classify optimal location queries into three cate-
gories based on the cost metrics: i) competitive location queries, which com-
pute a candidate location p ∈ P (where P is a given candidate facility location
data set) that maximizes the total weight of the clients attracted by a new fa-
cility built at p [4] [5] [15] [19] [20] [29] [31] [36]; ii) MinSum location queries,
which compute a candidate location p ∈ P on which a new facility can be set
up to minimize the total weighted attract distance (WAD) of the clients [4];
iii) MinMax location queries, which compute a candidate location p ∈ P on
which a new facility can be set up to minimize the maximum WAD of the
clients [9] [18] [23] [24] [35]. Beyond these three categories, another category
named the MinCost query computes a location (a group of locations) for
setting up a new facility (new facilities) such that the cost of setting up the
facilities and the overall transportation cost is minimized [6] [7].

These studies differ from ours in that they are interested in computing just
one location, while ours computes a (non-predetermined) number of locations,
which is more challenging and cannot be solved by the existing approaches.

2.2 Facility Location and Set Cover Problems

Facility location problems (FLP) have been studied in the field of Operation
Research [3] [22] [26] under application context such as sensor network deploy-
ment [2] [17] [25] [28], resource allocation [21] [25], etc. Common aims of FLP
are: i) minimizing the cost of setting up new facilities [21] [22] or maximizing
the number of clients served by a given number of facilities [2] [3] [25]; ii)
selecting k of the candidate facility locations, and then assigning each of the
clients to its closest facility so as to minimize their average distance [2] [17]
[21] [26] [34]. FLP problems are similar to our problem but with two major
differences. First, many FLP problems compute a fixed number of facility lo-
cations to maximize their impact rather than requiring a full coverage of the
clients. Second, FLP often depends on specific applications and have applica-
tion dependent cost metrics (e.g., sensor network cost model), and hence the
solutions are difficult to extend to general distance based metrics.

Set cover [1] [8] [10] [14] is another branch of studies similar to ours. How-
ever, set cover algorithms are not directly applicable because they assume that
the candidate subsets already exist while we aim to avoid generating all the
candidate subsets.

6 Fangshu Chen et al.

2.3 Group Optimal Location Selection

More relevant studies are discussed in [12] [14] [25]. Sakai et al. [25] study the
k-optimal location query (MkOLS) that selects the k locations that cover the
maximum number of clients. They propose the Estimation based Algorithm
(EB) which consists of a suite of pruning rules to reduce query cost. Although
the algorithm is effective, its aim is to assign the maximum number of cilents
to k facilities. Adapting the algorithm to our problem is inefficient because
it requires running the algorithm iteratively with increasing value of k until
all clients are covered. The other studies [12] [14] [33] share similar problem
definition and techniques with [25] and hence their algorithms are not suitable
to our problem either.

There are two algorithms that can be adapted to solve our problem – the
GCA algorithm [33] and the CREST algorithm [30]. GCA answers the GOAL
problem over a set of clients with uncertain locations in polynomial time while
ensuring that all the client points can be covered with a bounded probabil-
ity. GCA consists of two phases: i) selecting candidate coverage sets using a
heuristic Closure polygon algorithm, ii) refining the coverage sets by dynamic
programming. CREST is proposed to solve the reverse nearest neighbor (RNN)
heat map problem which shows the number of RNNs of every point in the space
with a grey scale heat map. It first draws nearest neighbor circles (NN-circles)
to divide the space into separated regions and then adopts the classic sweep
line algorithm to compute the number of RNNs of each region. By letting the
NN-circle radius be our coverage radius r, each region produced by CREST
corresponds to a candidate subset. We adapt the algorithm so that it produces
the regions that together cover all the clients. We compare our algorithms with
these two algorithms in the experimental study.

Notice that the competitive location queries, also called maximizing bi-
chromatic reverse nearest neighbor search [20] [31] [36], can also be adapted
to our problem. However, since the goal of the MaxOverlap algorithm intro-
duced in paper ”Efficient Method for Maximizing Bichromatic Reverse Nearest
Neighbor (BRNN)” [20] [31] is finding out one optimal region or k regions to
maximize the BRNN number, it cannot guarantee that all the client points
can be served. The coverage sets derived by the algorithm may overlap with
each other dramatically. That is to say, in the worst case, there may be some
outlet point, and the MaxOverlap algorithm has to find out a huge number of
optimal regions to cover it.

According to the analysis above, we modified the MaxOverlap algorithm
[20] [31] to make it better adapt to our problem. The changes are as follows:
i) For the NLC construction step in MaxOverlap [31] algorithm, we set the
distance between a client point and its nearest service site be the coverage
radius r, and in this way the nearest neighbor query in this step can be omitted;
ii) we find out top k optimal regions instead of one optimal region such that
the top k optimal regions can cover all the client points collectively; iii) we
record the client point that has been covered, such that the top k MaxOverlap
algorithm terminates only when all the points have been covered.

GOAL: A Clustering Based Method for the Group Optimal Location Problem 7

Table 1 Frequently Used Symbols

Symbol Meaning

O the set of data points (clients)
r the coverage radius of a facility
dist(oi, oj) the distance between two points
Ci,j the grid cell on ith row and j th column
n the size of O
k the parameter of k-means clustering
∆ the increment step size of k
p the center of a coverage set
P a set of facilities
CS a coverage set
Θ a set of coverage sets

3 Problem Statement

We first present a few basic concepts and a problem definition. Frequently
used symbols are listed in Table 1.

We consider a point set O in a 2-dimensional Euclidean space representing
the clients, and use the Euclidean distance to measure the distance between
two points p and o, denoted by d(p, o).

Given a constant r ∈ R+ and two points p and o, where p represents
a facility location and o represents a client, we say that p covers o if their
distance d(p, o) is less than or equal to r. We call r the coverage radius of p.
The set of clients covered by p is called a coverage set, denoted by CS.

Definition 1 (Coverage Set) Given a coverage radius r ∈ R+ and a
point set O, a coverage set CS is a subset of O, such that every point in CS
can be covered by the same point p.

The Group OptimAl Location (GOAL) problem computes a minimum num-
ber of coverage sets, such that the union of them is the set O.

Definition 2 (GOAL) Given a coverage distance r ∈ R+ and a point
set O, the Group OptimAl Location problem finds the minimum number of
disjoint coverage sets such that the union of these coverage sets is O, and
returns this number as well as a corresponding set of coverage sets.

Formally, let Θ = {CS1, CS2, ..., CSm} be the set of coverage sets returned.
This set satisfies that

(i) ∀i, j ∈ [1,m], i 6= j : CSi ∩ CSj = ∅;
(ii)

⋃m
i=1 CSi = O;

(iii) For any other set Θ′ satisfying the two conditions above, |Θ| <= |Θ′|.

As discussed in Section 1, the GOAL problem is NP-hard [14] [33], and
the answer coverage sets are not unique. Our focus is to find an approximate
solution with a small number of coverage sets. For example, as shown in Fig. 2

8 Fangshu Chen et al.

(a), given a client data set O={o1, o2, o3, o4, o5, o6, o7, o8}, a possible problem
answer is Θ = {CS1 ,CS2} as shown in Fig. 2 (b), and |Θ|=2.

2
3

4

5

2

6

n1

n2

n3

n4

n5

o1

o2

o3

o4

(a) The road network

2
3

4

5

2

6

n1

n2

n3

n4

n5

o1

o2

o3

o4
CS1 CS2

p1

p2

(b) A possible result

Fig. 3 Example of the GOAL problem in a road network

We also consider the GOAL problem in road networks, where a road net-
work is modeled by a graph G = 〈V,E〉 embedded in a Euclidean space. Here,
V denotes a set of vertices (intersections in the road network) and E denotes
a set of edges (roads). The edge length is computed as the Euclidean distance
between the two vertices of the edge. The set of objects O are on the edges (or
at the vertices) of the graph. The GOAL problem in road networks has a simi-
lar definition to that in Euclidean space, except that now the distance between
a facility and a client is computed as their graph shortest path distance.

For example, as shown in Fig. 3 (a), given a road network where n1, n2, n3, n4,
n5 are the vertices and the length of each edge are shown on the edges, a cov-
erage radius r = 4, and a client data set O = {o1, o2, o3, o4}, a possible set of
coverage sets is shown in Fig. 3 (b), where Θ = {CS1 ,CS2}, and |Θ| = 2.

4 Algorithms

The overall procedure of our algorithms is as follows. We run a clustering
algorithm to obtain an upper bound on the number of disjoint subsets needed
to fully cover the data set where each cluster can be enclosed by an r-radius
circle. The clusters obtained form our initial problem answer. Then we apply a
two-stage merging procedure to further refine the coverage sets obtained. The
first stage uses a grid to partition the data space and merges coverage sets in
nearby grid cells. The second stage further merges the coverage sets through
examining different pairs of coverages sets. Two strategies are used – greedy
and dynamic programming – to reduce the number of pairs of coverage sets
to be considered, resulting in two algorithms GOAL-Greedy and GOAL-DP,
respectively. Figure 4 summarizes the overall algorithm procedure.

GOAL: A Clustering Based Method for the Group Optimal Location Problem 9

 Data set O and

coverage radius r

Yes

No;

increase the targeted

number of clusters

Clustering on O

(L2-norm)

MaxR≤ r

GridMerge to merge the

coverage sets

GOAL-Greedy/DP to further

merge the coverage sets

The final coverage sets

Fig. 4 Algorithm overview (maxR is the maxDist between two points in a cluster)

4.1 Clustering

We compute an upper bound of the number of coverage sets needed by run-
ning a clustering algorithm over the client data set O. We use the k-means
clustering algorithm for simplicity, although other clustering algorithms such
as DBSCAN may be used as well. Specifically, we run k-means with a prede-
fined initial value of k over O. We compute the inner maximum distance for
each cluster obtained, i.e., the maximum distance between any two objects in
a cluster, denoted by maxR. If maxR ≤ r holds for every cluster, the clusters
obtained satisfy the GOAL problem, and each forms a coverage set. We draw
a circle centered at the geometric center of the clients in a coverage set with
radius r (cf. the solid circles in Fig. 2(b)). This circle encloses all the clients
in the coverage set, and a facility set up at its center can cover all the clients
in the coverage set. We call this circle a coverage set circle and use it to rep-
resent a coverage set in the figures in the rest of the paper. If maxR > r for
some cluster, we increase k by ∆ which is a empirically learned parameter. We
repeat the process above until maxR ≤ r for every cluster obtained.

10 Fangshu Chen et al.

When the clustering algorithm terminates, the clusters obtained serve as
our initial answer coverage sets. The value of k at termination is an upper
bound of the number of coverage sets required to fully cover all the clients.

4.2 Grid Partition Based Coverage Set Merging

Since maxR ≤ r is a relaxed bound, we may not need all the initial coverage
sets but can merge some of them to obtain fewer coverage sets.

We use a grid partition to refine the coverage sets as follows. We partition
the space using a grid where each cell is a square with an edge length of

√
2r,

as shown in Fig. 5 (a). For ease of discussion we assume that the data space
can be partitioned into integer numbers of rows and columns. The last row and
column of the grid may contain partially empty space but this does not affect
the correctness of the algorithm. This partition guarantees that all points in
the same cell can be covered in a coverage set, because a cell is fully enclosed
in a circle sharing the same center with the cell with a radius of r, as shown
in Fig. 5(b).

The advantages of the grid partition are: i) only the data points in the same
or adjacent cells can form a coverage set which can help prune the search space
for coverage set merging; ii) for a given coverage set, we only need to check
its adjacent cells for coverage set refinement by merging with a neighboring
coverage set or exchanging some clients with a neighboring coverage set.

We present two lemmas to support coverage set merging based on the grid
partition.

4.2.1 Coverage Sets Not to Be Merged

O1

O2

O3

O4

O5

O6

0

1 2 3

1

2

0

O8

O7

(a) The partitioned space

r

(b) A grid cell

Fig. 5 Grid partition

First, we discuss the case where two coverage sets are not to be merged.
Let Ci,j be the grid cell at row i, column j. The cells within 2

√
2r distance of

Ci,j (including Ci,j itself) form the adjacent region of Ci,j , i.e., the adjacent

GOAL: A Clustering Based Method for the Group Optimal Location Problem 11

O1

O2

O3

O4

O5

O6

0

1 2 3 4 5

1

2

3

4

O7

O8

C2,2

0

Fig. 6 Adjacent Region

region is a set {Cx,y|i− 2 ≤ x ≤ i+ 2, j − 2 ≤ y ≤ j + 2}. The region enclosed
by the dashed line boundary in Fig. 6 exemplifies the adjacent region of C2,2.

The adjacent region of Ci,j defines a region where a client o′ must be in if o′

and some client o ∈ Ci,j belongs to the same coverage set. This is formulated
as the following lemma.

Lemma 1 Given two client points o ∈ Ci1,j1, o
′ ∈ Ci2,j2, if Ci2,j2 is not in

the adjacent region of Ci1,j1, then o, o′ cannot be in the same coverage set.
Proof Suppose that the centers of Ci1,j1, Ci2,j2 are c1(x1, y1) and c2(x2, y2).

Since Ci2,j2 is not in the adjacent region of Ci1,j1, we know that i2 < i1 −
2ori2 > i1+2orj2 < j1−2orj2 > j1+2. Suppose that i2 < i1−2 holds (same
argument holds for the other cases). Then, according to the grid cell size,

x2√
2r

<
x1√
2r
− 2⇒ |x1 − x2| > 2

√
2r (1)

Since c1(x1, y1) and c2(x2, y2) are the centers of two cells, we also have

|y1 − y2| > 2
√

2r (2)

Thus,

dist(c1, c2) > 4r (3)

For any o ∈ Ci1,j1, o
′ ∈ Ci2,j2, we have

dist(o, c1) < r ∧ dist(o′, c2) < r (4)

Also,
dist(c1, c2) ≤ dist(o, c1) + dist(o′, c2) + dist(o, o′) (5)

Based on Inequalities (3), (4), and (5), we have

dist(o, o′) > dist(c1, c2)− 2r > 2r (6)

12 Fangshu Chen et al.

Thus, o, o′ cannot be in the same coverage set. �
According to Lemma 1, if two coverage sets are not in the adjacent region

of each other, they should not be merged into a coverage set.

4.2.2 Coverage Sets to Be Merged

Next, we discuss two cases where two coverage sets can be merged together to
form a single coverage set, and hence reduce the number of coverage sets.

The first case states that two coverage sets can be merged if their centers
are sufficiently close.

Lemma 2 Given two coverage sets CS1 and CS2 centered at c1 and c2,
if dist(c1, c2) ≤ r − max{maxR(CS1),maxR(CS2)}, then CS1, CS2 can be
merged into one coverage set.

Proof Without loss of generality we assume that

max{maxR(CS1),maxR(CS1)} = maxR(CS1)

It is sufficient to show that for any client point o in CS1, its distance to
the center of CS2 does not exceed r, meaning that o can be merged into CS2:

∀o ∈ CS1, dist(o, c2) ≤ r (7)

Based on triangular inequality,

dist(o, c2) ≤ dist(o, c1) + dist(c1, c2) (8)

Meanwhile,
dist(o, c1) ≤ maxR(CS1) (9)

If
dist(c1, c2) ≤ r −max{maxR(CS1),maxR(CS2)},

then, dist(c1, c2) ≤ r −maxR(CS1)
(10)

From Inequalities (8), (9), and (10), we derive

∀o ∈ CS1, dist(o, c2) ≤ maxR(CS1) + r −maxR(CS1) = r (11)

Thus, all the points in CS1 can be merged into CS2 safely. �
The next case for merging is based on a concept named the reachable region.

The reachable region of a grid cell Ci,j is a square that has the same center
as Ci,j , but with an edge length of 2

√
2r. The dashed line square in Fig. 7

exemplifies the reachable region of C1,1. The four vertices of the reachable
region of Ci,j are the centers of the four cells Ci−1,j−1, Ci−1,j+1, Ci+1,j−1,
and Ci+1,j+1, i.e., C0,0, C0,2, C2,0, and C2,2.

Lemma 3 Let CSi,j be the set of coverage sets whose centers are all
in a cell Ci,j . Let CSR be the set of coverage sets whose centers are in the
reachable region of cell Ci,j (excluding the coverage sets in CSi,j). Define CS0

as a coverage set that consists of the points in a circle centered at the center

GOAL: A Clustering Based Method for the Group Optimal Location Problem 13

0

1 2 3

1

2

3

C0,0 C2,0

C2,2C0,2

C1,1

0

Fig. 7 Reachable Region

0

1 2 3

1

2

3

0

O1

O2

O3

O4

O5

O6 O8

O7

CSr1

CSr3

CSr2

CS1

CS2

(a)

0

1 2 3

1

2

3

0

O1

O2

O3

O4

O5

O6 O8

O7

CSr1

CSr3

CSr2

CS0

(b)

Fig. 8 Examples of reachable region based merging

of Ci,j with a radius of r. If each of the points in CSi,j \ CS0 can be covered
in some coverage set in CSR, we can safely move these points to the coverage
sets in CSR, keep CS0, and remove all the coverage sets in CSi,j .

Proof Figure 8 illustrates the lemma. In Fig. 8(a), there are two coverage
sets CS1 = {o1, o2, o3, o4} and CS2 = {o5, o6, o7, o8} in cell C1,1. There are
coverage sets CSr1, CSr2 and CSr3 in the reachable region of C1,1. The clients
o3, o4, o5, o6 are all in C1,1, while o1, o2 are enclosed by the coverage set circle
of CSr1, and o7, o8 are enclosed by the coverage set circle of CSr2. We can
safely merge o3, o4, o5, o6 as a coverage set CS0, while adding o1, o2 to CSr1

and o7, o8 to CSr2, as shown in Fig. 8(b). This way we reduce the number of
coverage sets.

14 Fangshu Chen et al.

A formal proof of the correctness of the lemma is straightforward based on
the edge length of the cells and the coverage radius of the circles. We omit it
for conciseness.

Algorithm 1: GridMerge
Input: initial coverage set collection Θ
Output: refined coverage sets Θ∗

1 count = 0
2 while count < IterationNum do
3 Sort the grid cells, get the sorted queue QC
4 while QC is not null do
5 Get a Cell C from QC
6 for every coverage set CSi in C do
7 for every point o in CSi do
8 if o is only covered by CSi then
9 Put CSi into Θ∗

10 flag=true;
11 break;

12 if flag==true then
13 continue; //goto the next coverage set

14 for every coverage set CSj (j > i) in Ω, Ω is the adjacent region of C)
do

15 if CSi and CSj satisfy Lemmas 2 or 3 then
16 CSj ← CSi

⋃
CSj

17 delete CSi from Θ
18 flag=true;
19 break;

20 if flag==true then
21 continue;

22 count ++;

23 Add the remaining sets in Θ to Θ∗

24 return Θ∗

4.3 All Coverage Set Pair Based Merging

We summarize the grid based merging process as the GridMerge algorithm.
The pseudo-code of the algorithm is shown in Algorithm 1. The algorithm first
sorts the grid cells based on the number of coverage sets centering at them in
the descending order. Let QC be the sorted queue of grid cells (line 3). Merge
processes the cells in QC one at a time (lines 4 to 19). For each coverage set
in cell Ci,j being processed, we check if the clients in the set is also enclosed
by the coverage set circle of some other coverage sets. If not then we put this
coverage set into the final problem answer Θ∗ (lines 7 to 13). Otherwise, we
merge the coverage sets based on Lemmas 2 and 3 (lines 14 to 19). Note that
after processing all cells in the grid, new coverage sets may be formed which

GOAL: A Clustering Based Method for the Group Optimal Location Problem 15

may need further merging. We thus run the algorithm iteratively until the
coverage sets become stable or a preset number of iterations has been reached
(line 2). Our experiments show that 5 iterations are sufficient for the data sets
tested.

The grid based merging is simple and effective, but it is also conservative.
We further refine the coverage sets via checking them pair by pair. We use
two strategies to avoid checking all pairs, resulting in two algorithms, GOAL-
Greedy and GOAL-DP, respectively.

4.3.1 GOAL-Greedy

Algorithm 2: GOAL-Greedy
Input: set O, cover radius r
Output: coverage sets collection Θ and |Θ|

1 while maxR > r do
2 k = k +∆;
3 Run k-means on data set O, get the clustering sets Θ∗;

4 Build a grid over the coverage sets Θ∗ obtained by clustering
5 Call GridMerge over the initial coverage sets and get the merged coverage sets Π;
6 Sort Π in descending order;
7 for every coverage set CSi in Π do
8 for every coverage set CSj in the reachable region of CSi do
9 for every point o in CSj do

10 if o ∈ CSi then
11 Delete o from CSj ;

12 if CSj is NULL then
13 delete CSj from Π;

14 Θ = Π;
15 return Θ and |Θ|;

GOAL-Greedy examines the coverage sets in the descending order of their
numbers of client points. For a coverage set CSi being examined, we fetch all
the client points from the coverage sets that have not been examined, and add
them to CSi if they are within the coverage set circle of CSi. The added client
points are removed from their original coverage sets. If a coverage set becomes
empty after the client point removal, we remove this coverage set. Note that
we can pre-label the clients that are covered by multiple coverage set circles
with a sequential scan to reduce the computational costs.

We present the full procedure of GOAL-Greedy in Algorithm 2. First, we
run the k-means algorithm iteratively to get the initial coverage sets (lines
1∼3). At each iteration we increase parameter k by ∆, which is a predefined
increment step size. We will study the choice of initial value of k and the value
of ∆ empirically in Section 6.1. When maxR ≤ r is reached, we terminate the
clustering process, and use the clusters obtained as the initial coverage sets.

16 Fangshu Chen et al.

Then we build the grid over the centers of the coverage sets (line 4), and call
GridMerge for an initial merging of the coverage sets. From line 6 to line 13,
we use a greedy strategy to further remove the redundant coverage sets as
described above. In what follows, we use an example to illustrate the whole
procedure of GOAL-Greedy.

Example 1 As shown in Fig. 9(a), the client data set O = {o1, o2, o3, o4, o5
o6, o7}. Suppose that the initial coverage sets derived from running k-means is
Θinitial = {CS1, CS2, CS3, CS4, CS5, CS6}, and the centers of these coverage
sets are p1, p2, p3, p4, p5, p6, as denoted by the triangles. First, the gird cells
are sorted by the number of clusters centers. In Fig. 9(a), the descending
order of the cells is C1,2, C2,1, C2,3, C3,2, because C1,2 and C2,1 both contains
two centers, while C2,3 and C3,2 only contains one center. Based on Lemma
3, CS1, CS2 can be merged to one coverage set CS7, as shown in Fig. 9(b),
where o1, o2, o3, o4 are covered by the new coverage set CS7 centered at the
center of cell C2,1. Client o6 is merged to the adjacent coverage set CS4. We
get an intermediate result Θmiddle = {CS3, CS4, CS5, CS6, CS7}. Then C2,1

is processed. Based on Lemma 2, we can merge CS4, CS5 to coverage set
CS4. The result is shown in 9(c). And next, we run a greedy algorithm to
further merge the coverage sets. The descending order of coverage sets are
{CS6, CS7, CS3, CS4}. The algorithm checks CS6 at first, and o8 is moved to
CS6 and deleted from CS3. Next o3 and o4 are deleted from CS3, and since
CS3 is empty now, we can remove it from the answer set. The final coverage
sets are Θ = {CS4, CS6, CS7} as shown in Fig. 9(d), and |Θ| = 3.

GOAL-Greedy uses a greedy approach to merge the coverage sets which
is efficient, but may fail to find an optimal merging order of the coverage
sets. For example, in Fig. 10(a), there are seven client points {o1, o2, ..., o7}
forming three coverage sets after running GridMerge. Based on GOAL-Greedy,
coverage set CS1 will be processed at first, and points {o1, o2, o3, o4} will
be deleted from CS2, CS3. However,{o5, o6} can only be covered in CS2, so
CS2 has to be put into the final result, and this is same for CS3. Thus, the
answer set found by GOAL-Greedy is {CS1, CS2, CS3}. However, if we process
coverage sets CS2 and CS3 first, then CS1 can be removed from the result
which derives a more concise result {CS2, CS3}, as shown in Fig. 10(b). Next,
we present a Dynamic Programming based algorithm to obtain more concise
coverage sets.

4.3.2 GOAL-DP

To find a better merge of the coverage sets, we consider all the possible merging
of coverage sets. Suppose that the number of client points is n, and the mini-
mum number of facilities needed to provide a full coverage is minNum. We use
Θ to represent the optimal coverage set collection, andΠ = {CS1, CS2...CSm}
are the coverage sets derived from merging. The GOAL-DP algorithm decom-
poses the GOAL problem into two sub-problems: evaluating a sub- problem
GOAL(O′, i)(O′ ⊆ O) which returns the number of coverage sets needed to
solve the sub-problem, where i = 1, 2...m, and selecting min coverage sets

GOAL: A Clustering Based Method for the Group Optimal Location Problem 17

O1

O2

O3

O4

O5

O7

0

1 2 3

1

2

3

O6

C1,2

C2,1

Descending

order

CS1

CS2

CS3

CS1 CS2

CS4

CS5

p1
p2

p3

p4

p5

0

CS1={o1, o2}

CS2={o1, o3, o4, o6}

CS3={o3, o4, o8}

CS4={o5, o6, o7}

CS5={o5, o7}

CS6={o8, o9, o10, o11}

O8

p6

C2,3

C3,2

CS6

O9

O10

O11

(a) Initial distribution

CS3={o3, o4, o8}

CS4={o5, o6, o7}

CS5={o5, o7}

CS6={o8, o9, o10, o11}

CS7={o1, o2, o3,o4}

O1

O2

O3

O4

O5

O7

0

1 2 3

1

2

3

O6

CS7
CS3

CS4

CS5

P7

p3

p4

p5

0

O8

p6

CS6

O9

O10

O11

(b) First step merging (Lemma 3)

CS3={o3, o4, o8}

CS4={o5, o6, o7}

CS6={o8, o9, o10, o11}

CS7={o1, o2, o3,o4}
O1

O2

O3

O4

O5

O7

0

1 2 3

1

2

3

O6

CS7
CS3

CS4

P7

p3

p4

0

O8

p6

CS6

O9

O10

O11

(c) First step merging (Lemma 2)

CS4={o5, o6, o7}

CS6={o8, o9, o10, o11}

CS7={o1, o2, o3,o4}O1

O2

O3

O4

O5

O7

0

1 2 3

1

2

3

O6

CS7

CS4

P7

p4

0

O8

p6

CS6

O9

O10

O11

(d) Second step merging by Greedy

Fig. 9 Procedure of GOAL-Greedy

which contain objects whose number is not less than the number of objects
in min other coverage sets (i.e., at least a coverage set is different). When
min coverage sets contain all the objects, which means O′ = O, then min is
minimal. Thus the Dynamic Programming equitation can be described as,

GOAL(∅, 0) = 0; (12)

GOAL(O′ 6= ∅, 0) =∞; (13)

18 Fangshu Chen et al.

O5

O3

O7

O2

0

0 1 2

1

2

CS1

CS3

O1

CS2

O4

O6

P1

p2

p3

(a) Coverage sets computed by
Merge

O5

O3

O7

O2

0

0 1 2

1

2

CS3

O1

CS2

O4

O6
p2

p3

(b) More concise coverage sets

Fig. 10 Limitation of greedy merging

GOAL(O′, i) = min(GOAL(O′ − CSi, i− 1) + 1, GOAL(O′, i− 1)); (14)

The reasoning is quite straightforward: in the latest equation we can either
use or not use set CSi. In case we decide to use it, we still have to cover set
O′,using CS1, CS2, But we have already used CSi, so we have to add 1 to
the overall result. On the other hand we may decide not to use CSi. In this
case we have to cover the entire set O′ with remaining sets. Clearly we take
minimum out these two values. Algorithm 3 summarizes the above procedure.

Algorithm 3: GOAL-DP
Input: set O, cover radius r
Output: coverage sets collection Θ and minNum

1 while maxR > r do
2 k = k +∆;
3 Run k-means on data set O, get the clustering sets Θ∗;

4 Build a grid over the coverage sets Θ∗ obtained by clustering
5 Call GridMerge over the initial coverage sets and get the merged coverage sets Π;
6 initial the status table;
7 for every coverage set CSi in Π do
8 take CSi into O′ (use O′ to record the temporal client points set been covered);
9 GOAL(O′, i) = min(GOAL(O′ − CSi, i− 1) + 1, GOAL(O′, i− 1));

10 minNum = GOAL(O′,m);(O′ = O)
11 Θ = O′;
12 return minNum, Θ;

The overall procedure of GOAL-DP is similar to GOAL-Greedy except the
DP procedure described as line 6 to line 10 in Algorithm 3. Next, we use an
example to illustrate the whole procedure of GOAL-DP.

GOAL: A Clustering Based Method for the Group Optimal Location Problem 19

 O'

i … o 5 o 6 o 7 …

o 1 o 3 o 5

o 6 o 1 o 2 o 3 o 4 o 5 o 6 o 7

0 0 …

1 0 … 2

GOAL({o

1 o3 o5

o6}, 1)=1 …

GOAL({o1 o2 o3 o4 o5 o6 o7},

1)}=

…

…

…

GOAL({o1 o2 o3 o4 o5 o6 o7}, 3)

= min {GOAL({o5 o6 o7}, 2) +1,

GOAL({o1 o2 o3 o4 o5 o6 o7},

2) } =2
3 0 2 1……

… 1

GOAL({o1 o2 o3 o4 o5 o6 o7}, 2)

= min { GOAL({o1 o3 o5 o6}, 1) +1 ,

GOAL({o1 o2 o3 o4 o5 o6 o7},

1) } =2
2 0

GOAL({o5

o6 o7}, 2)

=2

…

Fig. 11 Status table of DP

Example 2 We still use the example shown in Fig. 10, suppose that Fig.
10(a) is the result derived from GridMerge procedure. We conclude the status
table of DP algorithm in Fig. 11. Each column describes a possible subset
of O, i.e., set O

′
. Each row describes a status, status i means that coverage

set CSi is now discussed, for example, status 0 means that no coverage set is
considered, and status 1 means consider coverage set CS1. It’s obvious that
the result found by GOAL-DP is the minimum number in the last column,
which is { CS2, CS3 } with minimum coverage set number 2, as shown in Fig.
11.

4.4 GOAL Algorithm for Road Networks

We extend our solution to GOAL in road networks, where we use the lemma
below to prune coverage sets from being merged.

Lemma 4 Given a point o and a coverage set CS in a road network,
suppose that the center of the coverage set is c. If the Euclidean distance
dist(o, c) > r, then o cannot be in CS.

Proof Since for any two points their Euclidean distance does not exceed
their road network distance [14], we know distrn(o, c) > dist(o, c), and hence
distrn(o, c) > r, where distrn() denotes the the network distance. Therefore,
o must not be in CS.

Based on Lemma 4, we can use the Euclidean Distance to derive the initial
coverage sets (as shown in Fig. 12) as what has been described in Section
4.1. This step can help us avoid computing road network distance between

20 Fangshu Chen et al.

the clients for clustering. Then, for each coverage set, we compute the road
network shortest path distance between a client point and the coverage set
center (the vertex on the road network that is closest to the geometric center
of the clients in the coverage set), and remove the clients that are not covered
by the center according to the network shortest path distance (as shown in
Fig. 12, we call this procedure Refinement). At last, we call DP algorithm for
final coverage set adjustment. We omit the pseudo-code of GOAL-RN, since
it is similar to GOAL-DP described above. We only illustrate the Refinement
procedure of GOAL-RN in Example 3, since the other steps are similar to
GOAL-DP.

Ajustment Refinement

Preprocessing

 Data set O,

 coverage radius r, and

road network graph G

The final coverage sets

Clustering

 by k-means
Grid partition

Road network

distance

computation

Point

adjustment

DP coverage

set merging

Fig. 12 Procedure of GOAL-RN

Oi

Pi

0

1 2 3 4 5

1

2

3

4

CS1

r = 3

n1 n2

n3

3 2

0

Fig. 13 Example of GOAL-RN refinement

GOAL: A Clustering Based Method for the Group Optimal Location Problem 21

Example 3 Suppose a coverage set CS1 locates at grid cell C1,1, where its
center pi is shown in Fig. 13; client oi is covered by pi; and dist(oi, pi) < r. We
then compute distrn(oi, pi). Note that, it is possible that pi is not on the road
network G, since pi is a cluster center. In that case, we replace pi by the vertex
on G that is nearest to it, which is n1 in Fig. 13. We have distrn(oi, pi) = 5 > r,
and oi is removed from CS1. We will search for a new nearest facility location
pj (center of another coverage set center) for oi in the order of the arrow line
as shown in Fig. 13 which is from the closest cells of C1,1 to the cells farther
away. We compute distrn(oi, pj) until it is not larger than r, and then put oi
in the coverage set of pj . If all coverage sets have been explored and none of
them can cover oi, then oi will form a new coverage set with itself.

5 Algorithm Analysis

5.1 Choice of Clustering Algorithm

The proposed algorithms do not rely on any particular clustering algorithm.
We use k-means for its simplicity. Additionally, compared with other popular
clustering algorithms such as DBSCAN [11], Hierarchical Clustering [27], and
Gaussian Mixture Model (GMM) [16] [13], k-means suits our problem setting
better in the following aspects. First, it naturally creates spherical clusters,
which form coverage sets nicely. Second, it is more stable on different coverage
radius values. In comparison, DBSCAN is more sensitive to the clustering
radius, and it is difficult to form coverage sets with a particular coverage radius.
To show this we run k-means and DBSCAN on the OL data set (described in
Section 6) and plot the result in Fig. 14. In the figure, each cluster formed is
represented by a different color. We see that DBSCAN creates clusters with
much more different sizes, while k-means creates clusters with similar sizes.

5.2 Optimality of Algorithm Output

As described in Section 4, each step of the three proposed algorithms can
ensure that all the points in one coverage set can be covered by a facility at
the coverage set center. Therefore, all the algorithms guarantee that all client
points are covered.

Next, we analyze how close the answers produced by GOAL-Greedy and
GOAL-DP are to the optimal problem answer with the minimum answer set
size. Let OPT be the minimum number of coverage sets required to cover the
whole client set, and k be the number of initial coverage sets produced after
clustering the clients. Let Ggreedy be the number of coverage sets that are
reduced by GOAL-Greedy. Then the approximation ratio of the GOAL-Greedy
algorithm is OPT

k−Ggreedy
. Similarly the approximation ratio of the GOAL-DP

algorithm can be represented by OPT
k−Gdp

where Gdp represents the number of

coverage sets that are reduced by GOAL-DP.

22 Fangshu Chen et al.

(a) k-means

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(b) DBSCAN

Fig. 14 Clusters produced by k-means and DBSCAN on the OL data set

Ideally, if the initial coverage sets at different grid cells can be processed
independently, the grid cell based coverage set merging may achieve a good
coverage set reduction. However, this case is unlikely since there may be cov-
erage sets overlapping with more than one grid cells. In the worst case, the
greedy algorithm can be |O|-approximation algorithm.

There is no closed form equation to model the exact approximation ratio of
GOAL-Greedy or GOAL-DP, but GOAL-DP is expected to produce a smaller
number of coverage sets because it considers more combinations in merging
the coverage sets.

Based on the clustering result, we can use a enumerate method to derive
the optimal coverage sets. As we can see the enumeration algorithm is a brute-
force algorithm. In the worst case, let K be the number of initial coverage sets
produced after clustering, the enumeration algorithm will check

(
n
K

)
combi-

nations to get the optimal result, where n is an integer satisfying n ∈ [1,K).
And let m be the maximum size of influence set of a coverage set. The time
complexity of checking each combination is O(n2 ·m). In the worst case, the
cost of the proposed algorithm is O(n2 · m ·

(
n
K

)
). Thus, we only do exper-

iments on small size data sets to demonstrate the two proposed algorithms’
approximation ratio. For large data sets, we only use the answer set size to il-
lustrate the algorithms’ accuracy, since the algorithms accuracy increases with
the decrease of the answer set size.

5.3 Time Complexity

Both GOAL-Greedy and GOAL-DP contain the following three steps.

GOAL: A Clustering Based Method for the Group Optimal Location Problem 23

Step 1 (Clustering) We adopt the k-means clustering algorithm to com-
pute initial coverage sets. The time complexity of this step is O(|O| · (k + k ·
∆+ k · 2∆+ ...+ k(t− 1)∆) · t) = O(|O| · k · (t2/2) ·∆), where |O| denotes the
number of client, k is the initial clustering parameter, ∆ is the increment step
size and t is the number of iterations that k-means is run.

Step 2 (Grid partition and coverage set merging) We use a grid to index
the center of the initial coverage sets, such that when merging the coverage
sets, we only need to consider those in the adjacent or reachable regions of
each other. Suppose that the number of adjacent or reachable regions of all
the grid cells is w. Then the time complexity of this step is O(|O|+α ·w · |O|),
where α denotes the percentage of clients that are covered in more than one
coverage set circles.

Step 3 (Merging of clusters) We have introduced two kinds of merging,
the Greedy approach and Dynamic Programming approach. Suppose that the
coverage sets number is C after Step 2, the time complexity of Greedy and
Dynamic Programming are O(C logC) and O(C2) respectively.

The overall time complexity of GOAL-Greedy and GOAL-DP are O((k ·
t2 ·∆+α ·w) ∗ |O|+C logC) and O((k · t2 ·∆+α ·w) ∗ |O|+C2) respectively.

For the GOAL problem in road networks, our GOAL-RN algorithm con-
tains the following three three steps:

Step 1 (Clustering) The time complexity of this step is the same as that
in the Euclidean space since we use the Euclidean distance in this step.

Step 2 (Refinement and adjustment) The time complexity for road net-
work distance computation by Dijkstra’s algorithm is O(|O|·(|E|+|V |·log |V |))
with an implementation based on a min-heap (where |V | is the number of nodes
and |E| is the number of edges in G). Refinement and adjustment can be done
by one pass of the coverage centers for each data points, the time complexity
is O(|O| · (|E|+ |V | · log |V |) + |O| · k).

Step 3 (Merging of coverage sets) This step is the same as GOAL-DP, and
the time complexity is O(C2).

The overall time complexity of GOAL-RN is O(|O|2 +k · t2 ·∆ · |O|+ |E|+
|V | · log |V |) + C2).

6 Performance Evaluation

This section presents the experimental results. The algorithms were imple-
mented in C++ and all experiments were performed on a computer with a
3.6GHz Intel Core i7 CPU and 32GB memory running Ubuntu 14.04.

The experiments are performed using both synthetic and real data sets.
The synthetic data sets follow uniform, Gaussian, and Zipfian distributions,
and the number of clients ranges from 2K to 500K. Four real world point
sets LB (Long Beach), CA (California), LA (Los Angeles), and NE (Northeast

24 Fangshu Chen et al.

Table 2 Summary of real data sets

Dataset Cardinality

LB 53145
CA 62556
LA 116596
NE 123593
OL 6104 nodes,7034 edges
SJ 18263 nodes,23873 edges
SF 174956 nodes,223001edges

Table 3 Experiment parameters

Parameters Default Values

|O| 50K
Initial k |O|/300
∆ |O|/300

US)1 and three real world road network data sets OL (the road network data
set for City of Oldenburg), SJ (City of San Joaquin County) and SF (San
Francisco)2 are used in the experiments. Table 2 summarizes the real data
sets and Fig. 6 illustrates four of them.

We compare the efficiency and the answer set size (the number of coverage
sets produced) of the proposed algorithms GOAL-Greedy and GOAL-DP with
two baseline algorithms GCA [33] and CREST [30] for the GOAL problem in
Euclidean space . The two baseline algorithms have been described at the end
of Section 2. We vary the number of clients, the data point distribution, and
the value of coverage radius r in the experiments. Table 3 summarizes the
default values of the parameters used.

We also study the performance of GOAL-RN for the road network setting.
Since GCA and CREST are incompatible with road networks, they are not
used in the road network experiments.

6.1 Effect of Parameter k

We first evaluate the effect of the initial value of k in k-means. We use the
synthetic data set Uniform (50K) and set the other parameters at their default
values. The result shows that k has a non-trivial influence on the algorithm
efficiency and answer set size. We can see from Fig. 16(a) and Fig. 16(b) that,
when n/300 < k < n/200 (where n is the size of the client set), we can get the
best performance overall.

Regarding efficiency, too large or too small k values both have negative
impact on the efficiency and effectiveness of algorithms. If the k value is too

1 http://www.dis.uniroma1.it/challenge9/download.shtml
2 http://www.cs.utah.edu/vlifeifei/SpatialDataset.htm

GOAL: A Clustering Based Method for the Group Optimal Location Problem 25

(a) CA (b) NE

(c) OL (d) SF

Fig. 15 Real world data sets

small, the clusters produced may be skewed and the clusters may have large
radius. We may need to run k-means for many times to reach a satisfying
radius which is time consuming. On the other hand, if k is too large, there
may be lots of initial coverage sets after produced by clustering, leading to a
more expensive merging step. Regarding answer set size, the impact of k is less
significant. This is expected as regardless of the initial value of k, the clusters
obtained as initial coverage sets are all bounded by the coverage radius. The
variation among different initial value of k is expected to be small. We observe
an exception for GOAL-Greedy at k = n/200. This is due to the greedy order
of merging used by the algorithm which happened to be a less preferable order
in this case. We repeat the same experiments and find a suitable of initial k
value for the other data sets. For parameter ∆, it has no directly impact on the
efficiency and effectiveness of algorithms, and it only has impact on k value.
Thus, we tune parameter ∆ and k at the same time.

26 Fangshu Chen et al.

0

1

2

n/400 n/300 n/200 n/100 n/50

k

GOAL Greedy GOAL DP

R
u

n
n

in
g

 t
im

e(
se

c)

(a) Effect of initial k on efficiency

0

50

100

150

200

250

300

n/400 n/300 n/200 n/100 n/50

k

GOAL Greedy GOAL DP

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

(b) Effect of initial k on the answer set size

Fig. 16 Effect of k

6.2 Comparison of algorithms

6.2.1 Approximation ratio comparison

According to the analysis in Section 5.2, we can use a enumerate method
to derive the optimal coverage sets. However, in this way, the cost is very
high. Thus, we only do experiments on small size data sets to demonstrate
the two proposed algorithms’ approximation ratio. For large data sets, we
only use the answer set size to illustrate the algorithms’ accuracy, since the
algorithms accuracy increases with the decrease of the answer set size. As
shown in Figure 17, the approximation ratio of GOAL-DP algorithm is near
1, and is only a little higher than 1. And the approximation ratio of GOAL-
Greedy algorithm changes dramatically with the data set size, but still keeps
a constant approximation ratio with respect to the enumerate algorithm.

Size of data set

0

1

2

3

4

5

6

7

8

2K 4K 8K 16K 32K

A
p

p
r
o
x
im

a
ti

o
n

 r
a
ti

o

GOAL-Greedy GOAL-DP

(a) Uniform

Size of data set

A
p

p
r
o
x
im

a
ti

o
n

 r
a
ti

o

0

1

2

3

4

5

2K 4K 8K 16K 32K

GOAL-Greedy GOAL-DP

(b) Zipfian (α = 0.8)

Fig. 17 Approximation ratio comparison

GOAL: A Clustering Based Method for the Group Optimal Location Problem 27

6.2.2 Effect of |O|

We then compare GOAL-Greedy and GOAL-DP with GCA [33], CREST [30]
and MaxOverlap [20] [31](which has been modified as described in Section 2
to adapt to our problem). We use both Uniform and Zipfian data sets and
vary the data set cardinality from 2k to 32k. We set the probability of a client
point being covered by a facility to 1 in GCA so that it can satisfy our problem
requirement. Figure 18 shows the overall algorithm running time. The result
shows that both GOAL-Greedy and GOAL-DP outperform GCA, CREST
and MaxOverlap, by up to 2 orders of magnitude. CREST and MaxOverlap
perform the worst.

This is because CREST has to compute every disjoint region’s number
of RNNs and then computes the combination of the most influential regions,
which is very time-consuming. And for MaxOverlap algorithm since the goal
of the algorithm is finding out one optimal region or k regions to maximize the
BRNN number, it cannot guarantee that all the client points can be served.
The coverage sets derived by the algorithm may overlap with each other dra-
matically. That is to say, in the worst case, there may be some outlet point,
and the MaxOverlap algorithm has to find out a huge number of optimal re-
gions to cover it. As a result, in the rest of the experiments, we only compare
with GCA, since CREST and MaxOverlap do not scale to larger data sets.

Figure 19 shows the effect of |O| on answer set size. GOAL-Greedy and
GOAL-DP again show significant advantage. Their answer sets are up to 80%
smaller than those of GCA, CREST and MaxOverlap. This is because GOAL-
Greedy and GOAL-DP have three effective merging strategies to reduce the
redundant coverage sets.

1

10

100

1000

10000

GOAL-

Greedy

GOAL-DP

GCA

CREST

MaxOverlap

Size of data set

R
u

n
n

in
g

 t
im

e
(s

e
c)

2K 4K 8K 16K 32K

(a) Uniform

1

10

100

1000

10000

100000

R
u

n
n

in
g

 t
im

e
(s

e
c)

GOAL-

Greedy

GOAL-DP

GCA

CREST

MaxOverlap

2K 4K 8K 16K 32K
Size of data set

(b) Zipfian (α = 0.8)

Fig. 18 Effect of |O| on running time

In Fig. 20 we show the algorithm performance on even larger data sets.
We only show the coverage merging time for GOAL-Greedy and GOAL-DP,
since clustering is independent from merging and we may use any clustering

28 Fangshu Chen et al.
T

h
e
 a

n
s
w

e
r
 s

e
t

s
iz

e

0

500

1000

1500

2000

2500

3000

3500

2K 4K 8K 16K 32K

GOAL-Greedy GOAL-DP GCA CREST MaxOverlap

(a) Uniform

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

0

500

1000

1500

2000

2500

3000

3500

2K 4K 8K 16K 32K

GOAL-Greedy GOAL-DP GCA CREST MaxOverlap

(b) Zipfian (α = 0.8)

Fig. 19 Effect of |O| on answer set size

1

10

100

100K 200K 300K 400K 500K

Size of Data set

GOAL Greedy GOAL DP GCA

R
u

n
n

in
g

 t
im

e(
se

c)

(a) Running time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100K 200K 300K 400K 500K

Size of dataset

GOAL Greedy GOAL DP GCA
T

h
e
 a

n
s
w

e
r
 s

e
t

s
iz

e

(b) Answer set size

Fig. 20 Effect of data set size

algorithm to compute the initial coverage sets. For fairness of comparison we
also omit the R-tree building time for GCA in the following figures.

From Fig. 20(a), we can see that, GOAL-Greedy and GOAL-DP outper-
form GCA significantly with the larger data sets. For GOAL-Greedy, it is up
to an order of magnitude faster. Fig. 20(b) illustrates the answer set size of the
three algorithms. With the increase of data set size, all the algorithms’ answer
set size increases. The performance of GCA degrades dramatically compared
with the proposed algorithms.

6.2.3 Effect of data set distribution

Figure 21 shows the effect of data set distribution on GOAL-Greedy, GOAL-
DP, and GCA. As shown in the figure, the proposed algorithms outperform
GCA in running time for the various data distributions tested, and the advan-
tage grows as the size of the data set increases. Both proposed algorithms can
solve the problem within 10 seconds on all data sets. They are several times
faster than GCA on Uniform and Gaussian data sets, and almost an order of
magnitude faster on Zipfian and real world data sets.

GOAL: A Clustering Based Method for the Group Optimal Location Problem 29

0
1
2
3
4
5
6
7
8
9
10
11

20K 40K 60K 80K 100K

GOAL Greedy GOAL DP GCA

R
u

n
n

in
g

 t
im

e(
se

c)

Size of data set

(a) Uniform

0

1

2

3

4

5

6

7

8

9

20K 40K 60K 80K 100K

GCAGOAL DPGOAL Greedy

R
u

n
n

in
g

 t
im

e(
se

c)

Size of data set

(b) Gaussian

0

20

40

60

80

100

120

20K 40K 60K 80K 100K

GOAL Greedy GOAL DP GCA

R
u

n
n

in
g

 t
im

e(
se

c)

Size of data set

(c) Zipfian (α = 0.8)

0

5

10

15

20

25

30

OL LB CA LA NE
Name of data set

GOAL Greedy GOAL DP GCA

R
u

n
n

in
g
 t

im
e(

se
c)

(d) Real data sets

Fig. 21 Effect of data distribution on efficiency

We also compare the effect of data distribution on answer set size. As shown
in Fig. 22, GOAL-DP gets much smaller answer set size than GOAL-Greedy in
all data sets tested, and they both outperform GCA, especially on Zipfian and
real world data sets In Fig. 22(c),(d), GOAL-DP shows almost two order of
magnitude improvement compared with GCA. This is because these two data
sets have non-uniform distributions, and in some dense area, the coverage set
checking process (by the Closure Polygon Algorithm [33]) of GCA is very time
consuming.

6.2.4 Effect of r

We further test the impact of the coverage radius r. Figure 23 shows the
result. As expected, as r increases, both the algorithm time and answer set
size decrease. This is because larger r results in more clients for each coverage
set and fewer coverage sets for the refinement.

30 Fangshu Chen et al.

1

10

100

1000

10000

20K 40K 60K 80K 100K
Size of data set

GOAL Greedy GOAL DP GCA

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

(a) Uniform

20K 40K 60K 80K 100K

Size of data set

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

1

10

100

1000

GOAL Greedy GOAL DP GCA

(b) Gaussian

20K 40K 60K 80K 100K
Size of data set

GOAL Greedy GOAL DP GCA

1

10

100

1000

10000

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

(c) Zipfian (α = 0.8)

1

10

100

1000

10000

OL LB CA LA NE
Name of data set

GOAL Greedy GOAL DP GCA
T

h
e
 a

n
s
w

e
r
 s

e
t

s
iz

e

(d) Real data sets

Fig. 22 Effect of data distribution on the size of answer set

0

1

2

3

4

5

6

7

8

9

10

11

200 300 600 900 1200

r

GOAL Greedy GOAL DP GCA

R
u

n
n

in
g

 t
im

e(
se

c)

(a) Effect of r on efficiency

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

0

1000

2000

3000

4000

5000

6000

200 300 600 900 1200

r

GOAL Greedy GOAL DP GCA

(b) Effect of r on the answer set size

Fig. 23 Effect of r

6.3 Performance on Road Networks

In this section, we demonstrate the effectiveness and efficiency of GOAL-RN,
Figure 24(a) demonstrates the answer set size of GOAL-RN algorithm on three
road network data sets with different size. We sample from two larger road

GOAL: A Clustering Based Method for the Group Optimal Location Problem 31

1

10

100

1000

10000

OL SJ SF

GOAL Greedy

GOAL DP

T
h

e
 a

n
s
w

e
r
 s

e
t

s
iz

e

(a) Answer set size on real data sets

0

20

40

60

80

100

120

8K 10K 12K 14K 16K

Size of data set

Overrall runningtime

Without preprocessing

R
u

n
n

in
g

 t
im

e(
se

c)

(b) Efficiency test on SJ

0

200

400

600

800

1000

1200

1400

1600

20K 40K 60K 80K 100K

Size of data set

Overrall runningtime

Without preprocessing

R
u

n
n

in
g

 t
im

e(
se

c)

(c) Efficiency test on SF

Fig. 24 Performance on road network data sets

network data sets TG and SF to test the algorithm’s efficiency as shown in Fig.
24(b)∼(c). The figure shows that GOAL-RN can solve the GOAL problem in
road networks within acceptable running time. We denote the algorithm time
excluding the time for running Dijkstra’s algorithm to compute the network
distance by ”Without pre-processing” since this computation can be done
offline. We see that our algorithm scales well to larger data sets without the
network shortest path distance computation. It takes just a few seconds to
process a data set with 100k clients.

7 Conclusion

We studied the group optimal location (GOAL) problem in Euclidean space
and road networks. We used a clustering based method to compute an initial
answer and to estimate an upper bound of the number of locations needed
to solve the problem, which can prune the search space effectively. We pro-
posed three efficient algorithms GOAL-Greedy, GOAL-DP, and GOAL-RN for
Euclidean space and road networks that can efficiently (with near-linear time
complexity) produce answer sets with small size. Our algorithms outperform

32 Fangshu Chen et al.

existing algorithms GCA and CREST significantly in Euclidean space with
respect to both efficiency and answer set size. They are up to two and one
order of magnitude faster than CREST and GCA, respectively.

For future work, it will be interesting to investigate how the problem can
be solved in the general metric space, and how parallel frameworks such as
Spark can be used to scale the proposed algorithms to even larger data sets.
And, since running Dijkstra’s algorithm costs a lot of time. On large networks,
computing all-pair shortest paths consumes huge time and space. We consider
to improve the efficiency of this part in our future work.

Acknowledgement. This work was supported in part by the Key Disci-
plines of Computer Science and Technology of Shanghai Polytechnic University
(No. XXKZD1604), the Research Project of Shanghai Polytechnic University
(project number EGD18XQD02), Australian Research Council (ARC) Dis-
covery project (project number DP180103332), the Cultural Relic Protection
Science and Technology project of Zhejiang Province, the Key Research and
Development Program of Zhejiang Province, the NSFC under Grants (project
number 61522208), and the ZJU-Hikvision Joint Project. Huaizhong Lin is the
corresponding author.

References

1. Helmut Alt, Esther M Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P Fekete, Chris-
tian Knauer, Jonathan Lenchner, Joseph SB Mitchell, and Kim Whittlesey. Minimum-
cost coverage of point sets by disks. In Proceedings of the twenty-second annual sym-
posium on Computational geometry, pages 449–458. ACM, 2006.

2. Habib M Ammari. On the problem of k-coverage in mission-oriented mobile wireless
sensor networks. Computer Networks, 56(7):1935–1950, 2012.

3. Bhaswar B Bhattacharya. Maximizing voronoi regions of a set of points enclosed in
a circle with applications to facility location. Journal of Mathematical Modelling and
Algorithms, 9(4):375–392, 2010.

4. Sergio Cabello, José Miguel Dı́az-Báñez, Stefan Langerman, Carlos Seara, and Inmacu-
lada Ventura. Facility location problems in the plane based on reverse nearest neighbor
queries. European Journal of Operational Research, 202(1):99–106, 2010.

5. Fangshu Chen, Huaizhong Lin, Yunjun Gao, and Dongming Lu. Capacity constrained
maximizing bichromatic reverse nearest neighbor search. Expert Systems with Applica-
tions, 43:93–108, 2016.

6. Zitong Chen, Yubao Liu, Raymond Chi-Wing Wong, Jiamin Xiong, Ganglin Mai, and
Cheng Long. Efficient algorithms for optimal location queries in road networks. In
SIGMOD, pages 123–134, 2014.

7. Zitong Chen, Yubao Liu, Raymond Chi-Wing Wong, Jiamin Xiong, Ganglin Mai, and
Cheng Long. Optimal location queries in road networks. ACM Transactions on
Database Systems, 40(3):17, 2015.

8. Kenneth L Clarkson and Kasturi Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

9. Yang Du, Donghui Zhang, and Tian Xia. The optimal-location query. In International
Symposium on Spatial and Temporal Databases, pages 163–180, 2005.

10. Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation
schemes for geometric graphs. In Proceedings of the twelfth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 671–679. Society for Industrial and Applied Math-
ematics, 2001.

GOAL: A Clustering Based Method for the Group Optimal Location Problem 33

11. Martin Ester, Hans-Peter Kriegel, Jrg Sander, and Xiaowei Xu. A density-based al-
gorithm for discovering clusters in large spatial databases with noise. In KDD, pages
226–231. AAAI Press, 1996.

12. Yunjun Gao, Shuyao Qi, Lu Chen, Baihua Zheng, and Xinhan Li. On efficient k-optimal-
location-selection query processing in metric spaces. Information Sciences, 298:98–117,
2015.

13. Xiaofei He, Deng Cai, Yuanlong Shao, Hujun Bao, and Jiawei Han. Laplacian regularized
gaussian mixture model for data clustering. IEEE Transactions on Knowledge and Data
Engineering, 23(9):1406–1418, 2011.

14. Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and
packing problems in image processing and vlsi. Journal of the ACM, 32(1):130–136,
1985.

15. Jin Huang, Zeyi Wen, Jianzhong Qi, Rui Zhang, Jian Chen, and Zhen He. Top-k most
influential locations selection. In CIKM, pages 2377–2380, 2011.

16. Mindaugas Kavaliauskas and Rimantas Rudzkis. Multivariate data clustering for the
gaussian mixture model. Informatica, Lith. Acad. Sci., 16(1):61–74, 2005.

17. Chun-Hee Lee, Chin-Wan Chung, and Seok-Ju Chun. Effective processing of continu-
ous group-by aggregate queries in sensor networks. Journal of Systems and Software,
83(12):2627–2641, 2010.

18. Feifei Li, Bin Yao, and Piyush Kumar. Group enclosing queries. IEEE Transactions on
Knowledge and Data Engineering, 23(10):1526–1540, 2011.

19. Huaizhong Lin, Fangshu Chen, Yunjun Gao, and Dongming Lu. Optregion: finding
optimal region for bichromatic reverse nearest neighbors. In International Conference
on Database Systems for Advanced Applications, pages 146–160. Springer, 2013.

20. Yubao Liu, Chi Wing Wong, Ke Wang, Zhijie Li, Cheng Chen, and Zhitong Chen. A
new approach for maximizing bichromatic reverse nearest neighbor search. Knowledge
Information Systems, 36(1):23–58, 2013.

21. Mehrdad Mohammadi, Fariborz Jolai, and Hamideh Rostami. An m/m/c queue model
for hub covering location problem. Mathematical and Computer Modelling, 54(11):2623–
2638, 2011.

22. Kyriakos Mouratidis, Dimitris Papadias, and Spiros Papadimitriou. Tree-based partition
querying: a methodology for computing medoids in large spatial datasets. The VLDB
Journal, 17(4):923–945, 2008.

23. Jianzhong Qi, Zhenghua Xu, Yuan Xue, and Zeyi Wen. A branch and bound method
for min-dist location selection queries. In Proceedings of the Twenty-Third Australasian
Database Conference-Volume 124, pages 51–60, 2012.

24. Jianzhong Qi, Rui Zhang, Lars Kulik, Dan Lin, and Yuan Xue. The min-dist location
selection query. In ICDE, pages 366–377, 2012.

25. Kazuya Sakai, Min-Te Sun, Wei-Shinn Ku, Ten H Lai, and Athanasios V Vasilakos.
A framework for the optimal-coverage deployment patterns of wireless sensors. IEEE
Sensors Journal, 15(12):7273–7283, 2015.

26. David B Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 265–274, 1997.

27. R. Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method.
Comput. J., 16(1):30–34, 1973.

28. Rafael Suárez-Vega, José Luis Gutiérrez-Acuña, and Manuel Rodŕıguez-Dı́az. Locating a
supermarket using a locally calibrated huff model. International Journal of Geographical
Information Science, 29(2):217–233, 2015.

29. Yu Sun, Jianzhong Qi, Rui Zhang, Yueguo Chen, and Xiaoyong Du. Mapreduce based
location selection algorithm for utility maximization with capacity constraints. Com-
puting, 97(4):403–423, 2015.

30. Yu Sun, Rui Zhang, Andy Yuan Xue, Jianzhong Qi, and Xiaoyong Du. Reverse nearest
neighbor heat maps: A tool for influence exploration. In ICDE, pages 966–977, 2016.

31. Raymond Chi-Wing Wong, M Tamer Özsu, Philip S Yu, Ada Wai-Chee Fu, and Lian
Liu. Efficient method for maximizing bichromatic reverse nearest neighbor. Proceedings
of the VLDB Endowment, 2(1):1126–1137, 2009.

34 Fangshu Chen et al.

32. Xiaokui Xiao, Bin Yao, and Feifei Li. Optimal location queries in road network
databases. In ICDE, pages 804–815, 2011.

33. Chuanfei Xu, Yu Gu, Roger Zimmermann, Shukuan Lin, and Ge Yu. Group location
selection queries over uncertain objects. IEEE Transactions on Knowledge and Data
Engineering, 25(12):2796–2808, 2013.

34. Chuanfei Xu, Yanqiu Wang, Yu Gu, Shukuan Lin, and Ge Yu. Optimal k-constraint
coverage queries on spatial objects. In Proceedings of the Twenty-Third Australasian
Database Conference-Volume 124, pages 41–50, 2012.

35. Donghui Zhang, Yang Du, Tian Xia, and Yufei Tao. Progressive computation of the
min-dist optimal-location query. In VLDB, pages 643–654, 2006.

36. Zenan Zhou, Wei Wu, Xiaohui Li, Mong Li Lee, and Wynne Hsu. Maxfirst for maxbrknn.
In ICDE, pages 828–839, 2011.

Fangshu Chen is currently a lecturer in the College of Com-
puter Science and Information Engineering, Shanghai Polytechnic University.
She received her Ph.D degree from Zhejiang University in 2017. Her research
interests include spatio-temporal databases, location based social networks,
and data mining.

Jianzhong Qi is currently a lecturer in the Department of
Computing and Information Systems at the University of Melbourne. He re-
ceived his Ph.D degree from the University of Melbourne in 2014. His research
interests include spatio-temporal databases, location based social networks,
information extraction, and text mining. He has published more than 40 pa-
pers on several premium/leading journals including TODS, VLDBJ, TKDE,
and various prestigious international conferences such as ICDE, VLDB, NIPS,
ACL and DASFAA.

Huaizhong Lin is currently an associate professor of com-
puter science in Zhejiang University. He received a Ph.D. degree in Computer
Science from Zhejiang University in 2002. His research interests are database

GOAL: A Clustering Based Method for the Group Optimal Location Problem 35

and data mining, spatial database, information retrieval etc., he has published
over 40 research papers in journals and conferences.

Yunjun Gao is now a full professor at the College of Com-
puter Science, Zhejiang University. He received the Ph.D. degree in computer
science from ZJU in 2008. His primary research areas are Database, Big Data
Management and Analytics, and AI Interaction with DB Technology. He has
published more than 100 papers on several premium/leading journals including
TODS, VLDBJ, TKDE, TOIS, TFS, TITS, and DKE, and various prestigious
international conferences such as SIGMOD, VLDB, ICDE, SIGIR, EDBT, and
DASFAA.

Dongming Lu is currently a professor of computer science
in Zhejiang University, the executive director of the Computer Society of net-
work technical, director and members of the special committee of the China
Digital Museum of Zhejiang Province. His research fields mainly focus on the
digital media network technology and system, Heritage digital protection and
culture passing technology, Wireless and next generation Internet technology
and Network information security technology. He has published more than 60
articles and 11 invention patents in the past five years.

	Introduction
	Related Work
	Problem Statement
	Algorithms
	Algorithm Analysis
	Performance Evaluation
	Conclusion

