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Abstract
In the coming era of connected autonomous vehicles, data-driven
traffic optimization will reach its full potential. By collecting highly
detailed real-time traffic data from sensors and vehicles, a traffic
management system will have the full view of the entire road net-
work, allowing it to plan traffic in a virtual world that replicates
the real road network. This will bring significant innovations to
transport-domain applications. We prototype a traffic management
system that can perform traffic optimization with connected au-
tonomous vehicles. We propose two route assignment algorithms
that aim to reduce traffic delays by reducing intersecting routes.
The proposed algorithms and two state-of-the-art route assignment
algorithms are implemented in the prototype system. We evaluate
the algorithms with both synthetic and real road networks. The ex-
perimental results show that the proposed algorithms outperform
competitors in terms of the travel times of the routes.
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1 Introduction
It is estimated that a majority of the vehicles will be connected au-
tonomous vehicles (CAVs) in the future [10]. The current generation
of CAVs are designed to imitate the driving behaviour of human dri-
vers. The vehicles work as independent units just like human-driven
vehicles. In our view, the potential of CAVs will be better realized
when all the vehicles are coordinated for maximizing system-wide
traffic efficiency [6]. A highly coordinated traffic system may soon
become a reality given the rapid development of CAVs [8]. In such
a system, a CAV constantly reports traffic information to a traffic
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management system (TMS). The information includes not only the
status of the vehicle itself, such as its position and speed, but also
the details about its surrounding environment, such as a road acci-
dent near the vehicle. By collecting traffic data from CAVs, the TMS
can get a full view of the entire road network, allowing it to perform
system-wide traffic planning in a virtual world. For example, when
a TMS predicts traffic congestions caused by an unusual surge of
traffic demand, it can plan detours for vehicles such that they can
avoid the predicted congestions without causing new congestions
in other areas. This work, the first of its kind, focuses on traffic
optimization through route allocation based on the aforementioned
traffic management scheme.

We propose two route assignment algorithms to mitigate traf-
fic congestions for metropolitan areas, where traffic congestions
are at their worst [9]. The algorithms tackle a key contributor to
traffic congestions: the concentration of intersecting routes at road
junctions [2, 11]. Intersection of routes can lead to long waiting
times of the vehicles at junctions. Although innovative junction
designs can help to mitigate congestions caused by intersecting
routes [1], they require significant costs to implement and may lack
the flexibility to adapt to sudden changes in traffic patterns. It may
also be infeasible to alter the junctions due to spatial constraints
or heritage conservation. Figure 1 illustrates the effects of an ideal
route assignment algorithm. The left sub-figure shows three sub-
optimal routes with two route-intersections. The right sub-figure
shows the altered routes, where there is no intersecting route and
the total travel time of all the vehicles can be reduced.

Figure 1: (a) Intersecting routes between three pairs of source-
destination, S1-D1, S2-D2 and S3-D3. (b) Routes between the same
source-destination pairs without intersections. Routes are shown
on Euclidean space for the sake of simplicities.

Due to the NP-hardness of traffic optimization problems, our
algorithms use heuristics for efficient computation. Both of them are
based on the A* algorithm [3], which considers a heuristic function
in addition to the minimal travel cost during the search for shortest
paths. The algorithms differ in the scope of traffic information used
for searching the routes. The first algorithm, Local Detour Algorithm
(LDA), uses traffic information that is confined to specific road
links or road junctions, which are explicitly explored during route
allocation. The second algorithm, Multiple Intersection Reduction
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Algorithm (MIRA), enlarges the scope of traffic information by using
a global view of traffic conditions. A heatmap is constructed based
on the travel times on road links. With this heatmap, new routes can
bypass entire city blocks that are affected by intersecting routes.

To the best of our knowledge, the most comparable algorithm is
Self-Adaptive Interactive Navigation Tool (SAINT) [4]. For a source-
destination pair, SAINT creates a number of candidate routes to
minimize the increase of congestion based on the current traffic
conditions. The algorithm tries to assign different candidate routes
to different vehicles with the same source-destination pair. Our
experiments compare the proposed algorithms with SAINT using
microscopic traffic simulations. The results show that MIRA is the
best approach for mitigating traffic congestions.

2 Streaming Route Assignment Algorithms
Wepropose two route assignment algorithms thatworkwith stream-
ing traffic data. The algorithms can be used in a traffic management
system that receives navigation requests from users and assigns
routes to the users. We assume that the users will follow the allo-
cated routes. Our algorithms canworkwith three types of streaming
data. The first is the source and the destination of vehicle trips. A ve-
hicle submits the information when it is ready to start a trip. Based
on the source-destination pairs, the algorithms generate routes. A
newly-generated route will be stored as it may affect the genera-
tion of routes in the future. The second type of streaming data is
the travel times on individual road links. When a vehicle passes
through a road link, its travel time spent on the link is reported to
the system. The average travel times on road links are updated pe-
riodically so they can show the most recent traffic flow conditions.
The third type of streaming data is the updated routes. When a vehi-
cle reaches the end of a road link, the vehicle’s route is shortened as
the link is removed from the route. The traffic management system
considers the shortened route for generating routes in the future
because there can be less intersecting routes and lower traffic load
due to the change of the route.

Both algorithms use a reservation graph that consists of a set
of vertices and a set of edges. The graph is the same as the road
network graph except that it keeps a reservation count at each
edge of the road network. The count keeps the number of routes
passing through the edge. When a new route is created, all the
reservation counts on the route increase by one. The count on an
edge decreases by one when a vehicle has passed through the edge.
LDA uses the graph to check the existence of intersecting routes.
MIRA uses the graph to predict the traffic load at road links. We
conjecture that knowing exact time plays no role when counting
intersecting routes and predicting traffic load at road links based
on our experience.

2.1 Local Detour Algorithm (LDA)
The intuition behind LDA is that the travel time of a vehicle can
be reduced if the vehicle spends less time waiting for conflicting
traffic at road junctions. LDA is based on the A* algorithm [3]. In
order to detour junctions with intersecting routes, LDA computes
a delay-value as the heuristic function. The delay-value is defined
in Equation 1, where α is an intersection factor and MATT is the
maximum average travel time on conflicting edges.

Delay = αMATT (1)

To compute theMATT of an edge em,n , which starts from vertex
m and ends in vertex n, LDA first uses the reservation graph to find
other edges that end in n but conflict with em,n . The algorithm then
compares the average travel times on the conflicting edges, which
have a positive reservation count. MATT is set to the maximum
average travel time.

A longer average travel time on a road link generally implies
that the traffic load at the link is higher. With an increase of the
traffic load on conflicting edges at a road junction, the number of
conflicting routes increases. As a result, a vehicle tends to spend
a longer time waiting at the road junction. This is the reason that
the delay-value is proportional to the maximum average travel
timeMATT . By decreasing the intersection factor, the delay-value
is decreased, which means the travel cost between two adjacent
vertices in the road network graph is lower. Consequently, the
search can be expanded to more vertices. However, there can be a
higher chance that a returned route intersects with existing routes.
On the contrary, increasing the intersection factor can help to avoid
more intersecting routes. Based on our early tests, we set the value
of LDA’s α parameter to 0.5 in the experiments.

2.2 Multiple Intersection Reduction Algorithm
(MIRA)

The intuition behind MIRA is that the travel time of a route can be
reduced more effectively by avoiding entire city blocks that are af-
fected by intersecting routes. Existing route assignment algorithms,
such as SAINT and other diversification-based approaches, do not
attempt to make long detours at the city level. They focus on not
assigning traffic to the same route. The routes given by these algo-
rithms generally go in one direction, from source to destination,
with minor deviations from the shortest paths. MIRA, on the other
hand, enables a higher level of flexibility of choosing travel direc-
tions on the route. This is achieved based on two data structures.
The first is a heatmap that shows the normalized average travel
times on road links in different city blocks, each of which covers
a rectangular area of a city. As the concentration of vehicles (and
the intersections of their routes) in a city block generally leads to
a relatively high average travel time in the block, the difference
between adjacent heatmap values shows the direction of traffic
flows at the global level. The heatmap is periodically updated based
on the latest traffic information sent from CAVs. The second data
structure is the reservation graph, which helps to show the direc-
tion of traffic at individual road junctions. The reservation counts
in the graph are updated in the same way as in LDA. Similar to
LDA, MIRA is also based on A* algorithm but the heuristic function
for an edge is defined as the product of two values. One is the value
of the heatmap cell that covers the edge. Another is the reservation
count at the edge. This not only helps vehicles to avoid a large
number of intersecting routes altogether by detouring around city
blocks affected by those routes, but also helps vehicles to avoid
individual road junctions that are affected by intersecting routes
within a block.

The heatmap is constructed by mapping the whole road network
space into a grid. For each cell of the grid, the average travel time on
road links is computed. As we focus on mitigating congestions in
metropolitan areas, we assume that the road links in different grid
cells are homogeneous, which means the road links have similar
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length, capacity and speed limit. The average travel time of each
cell is normalized by dividing the average travel time of the cell by
the total value of all the cells. The normalized values are filled into
the heatmap.

2.3 Super-MIRA (sMIRA)
There can be many variations of MIRA based on the heatmap. We
describe one variation, called super-MIRA (sMIRA). Compared to
MIRA, the global traffic flow directions play a more important role
with sMIRA. The algorithm increments the reservation count of
an edge on a newly allocated route by the edge’s corresponding
heatmap value, rather than a fixed value, 1, as inMIRA. The heatmap
value is deducted from the reservation count once the vehicle with
the route passes through the edge. Our experiments show that
sMIRA can work even better than MIRA in a situation, where a
majority of the vehicles concentrate to the centre of an area while
other vehicles move across the area.

3 Experiments
Our main experiments compare the proposed algorithms, LDA and
MIRA, against two baseline algorithms in terms of the quality of
the allocated routes. The first baseline algorithm is called First-
In-First-Assigned Fastest (FIFA-Fastest). This algorithm computes
routes based on the current travel times using Dijkstra’s algorithm.
The second baseline algorithm is SAINT [4], which is described in
Section 1. We also compares sMIRA with MIRA.

We build a prototype traffic management system that consists
of two components, a route allocator and a traffic simulator. The
route allocator receives navigation queries from the simulator and
computes routes based on the queries. The routes are given to
the traffic simulator, which simulates vehicles based on the routes
and outputs the travel times of the vehicles. The simulator used in
our experiments is SMARTS [7]. The simulator performs realistic
simulations based on microscopic traffic models. It also simulates
adaptive traffic lights as in the real world, which adjust traffic
signal timing in real time based on dynamic traffic flow conditions.
SMARTS has been used intensively in our research work, such as a
route allocation algorithm based on traffic diversification [5].

Wemeasure the performance of the algorithms using twometrics,
Travel Time Ratio at Individual level (TTRI) and Travel Time Ratio
at System level (TTRS), where BTT (vi ) is the best theoretical travel
time for a vehicle vi and TT (vi ) is the actual travel time of the
vehicle (Equation 2). The best theoretical travel time is calculated
under the assumption that the road network is empty and the
vehicle never encounters a red light at any junction. Therefore it is
always equal to or smaller than the actual travel time. Consequently,
TTRI is equal to or higher than 1. Different to TTRI, TTRS is based
on the total travel time of all the vehicles. TTRS is equal to or higher
than 1.

TTRI =
1
|V|

|V |∑
i=1

TT (vi )

BTT (vi )
and TTRS =

∑ |V |

i=1 TT (vi )∑ |V |

i=1 BTT (vi )
(2)

We note that there is no meaningful TTRI and TTRS if there are
gridlocks in the simulated traffic system. A gridlock appears once
an area is so severely congested that no vehicle can make further
movement. We observe that gridlocks will eventually appear when
the number of vehicles is beyond a certain value, no matter which

algorithm is used for routing. We call the maximum number of
vehicles that exist in a network without a gridlock the gridlock
threshold. Different algorithms can have different gridlock thresh-
olds. A higher gridlock threshold is better as the traffic network
can function with a larger number of vehicles. Our results do not
show TTRI and TTRS when the number of vehicles is beyond the
gridlock threshold.

3.1 Experimental Settings
We evaluate the algorithms based on a synthetic road network and
a real road network. The synthetic network is based on a grid plan
with two sets of streets. Each set has 12 streets that are parallel
to each other. A street in one set runs at right angle to a street in
another set. Traffic lights are installed at all road junctions. Adja-
cent junctions are connected by a two-way road segment that is
400 metres long. The speed limit for all the road segments is set to
40km/h, which is the common speed limit for many central business
areas across Australia. The default granularity of the heatmap for
MIRA is 3×3 as the area can be fully divided at this granularity. For
this road network, we evaluate the effects of two parameters on all
algorithms. For each parameter, we run simulations with different
values of the parameter while keeping the other parameter at its
default value. The first parameter is the number of vehicles. This
parameter can have a significant impact on travel times. As the
number of vehicles increases, the number of intersecting routes
increases, leading to a higher chance of traffic congestions. A good
route assignment algorithm can suggest routes that lead to satisfac-
tory travel times even when there are a large number of vehicles.
We vary the value of this parameter between 1000 and 10000. The
default value is 6000 because we cannot run SAINT with 7000 or
more vehicles. The second parameter is the spatial distribution
of source and destination, which is either uniform distribution
or Gaussian distribution. If a source or a destination is generated
with the uniform distribution, we randomly pick a point from the
road network as the source or the destination. With Gaussian dis-
tribution, the sources and the destinations are more likely to be
located around the centre of the road network area. Gaussian dis-
tribution is used as the default value as it is more realistic than the
uniform distribution for the central area of a city.

The real road network covers a 30km × 30km area centred at the
CBD of Melbourne. The speed limit of road segments, the number of
lanes on road links and the direction of road links are extracted from
OpenStreetMap (https://www.openstreetmap.org). This network
has 20400 vertices and 25600 edges. To minimize the impact of
variance in road links, this road network only contains freeways
and arterial roads in the area. For this network, we vary the number
of vehicles between 10000 and 50000. We use Gaussian distribution
for generating sources and destinations. The granularity of MIRA’s
heatmap is set to a relatively low value, 3 × 3, because the density
of roads is not high as we only use arterial roads. We do not include
SAINT in this experiment because the algorithm cannot return
routes in a manageable time based on this network.

3.2 Results
Our result with the synthetic network shows that MIRA outper-
forms other algorithms except when the number of vehicles is very
low (Figure 2). MIRA is the best algorithm for avoiding gridlocks.
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The gridlock threshold of MIRA is 9600 while the gridlock threshold
of the second-best algorithm, SAINT, is 6800. As shown in Figure 3,
all algorithms perform well when the sources and destinations fol-
low a uniform distribution but MIRA has a small advantage over
other algorithms in this situation. FIFA-Fastest and LDA perform
poorly with Gaussian distribution as they lead to gridlocks when
the number of vehicles are at the default value, 6000. SAINT and
MIRA are the only two algorithms that still work in this situation.
MIRA achieves a lower TTRI (3.29) than SAINT (3.92). The result
also shows that TTRI increases significantly for both algorithms
when the distribution changes from uniform to Gaussian. This is
understandable as there is a higher probability of route intersec-
tions when the sources and destinations become clustered. Overall,
MIRA achieves the best performance with both distributions.

Figure 2: TTRI and TTRS achieved with the synthetic road network.
Lower values are better.

Figure 3: TTRI achieved with the synthetic road network using two
source-destination distributions. Lower values are better.

For the real network,MIRA achieves the best performance among
all the algorithms (Figure 4). The gridlock threshold of both LDA
and FIFA-Fastest is lower than that of MIRA by 10000. This shows
that the global view of traffic conditions used by MIRA helps to
reduce intersecting routes significantly. The gap of TTRI between
MIRA and other two algorithms becomes higher when there are
more vehicles in the network. For example, the gap between MIRA
and LDA increases from 0.136 to 1.467 when the number of vehicles
increases from 10000 to 30000. We observe a similar trend in TTRS.
Compared to small road networks, such as the synthetic network
shown earlier, large road networks allow vehicles to make relatively
longer detours in exchange for better travel times. MIRA can take
this advantage by using the heatmap while other algorithms cannot.

Figure 4: TTRI and TTRS achieved with the real road network.
Lower values are better.

We compare MIRA and its variation, sMIRA, in a more com-
plex traffic scenario with the synthetic network, where the source-
destination pair of 80% of the vehicles follows Gaussian distribution
while the remaining vehicles start and end their trips at random
locations on the border of the area. The heatmap resolution is set
to 6 × 6 as it works best for both algorithms in this scenario. Our
result shows that sMIRA’s gridlock threshold is higher than that
of MIRA by 2000. sMIRA also achieves a lower TTRI and a lower
TTRS than MIRA.

We also run a test, where a portion of the routes are computed
with FIFA-Fastest while the remaining routes are given by MIRA
or SAINT. MIRA performs better than SAINT as it achieves a lower
TTRI when the ratio of FIFA-Fastest routes is between 0% and 20%.
SAINT leads to a gridlock when the ratio is higher than 20% but
MIRA can still work until the ratio reaches 40%.

Finally, we run an experiment to evaluate the impact of query
batch size on the TTRI achieved byMIRA. A larger batch size means
the system needs to wait for more queries until a batch is fully filled.
All the queries in a batch are processed together. We vary the batch
size between 1 and 50. Our result shows that the impact of the
batch size on the quality of the routes is negligible. That means the
stream window size can be set to a small value, e.g., a few seconds,
which ensures a fast response time of an application.

4 Conclusions
Our work shows that MIRA is a ready-deployable algorithm for
system-wide traffic optimization by minimizing intersecting routes.
Compared to a state-of-the-art algorithm, SAINT, MIRA can handle
more vehicles without causing gridlocks. The travel times of vehi-
cles are lower with MIRA than with other algorithms. It is also easy
to create variations of MIRA for specific traffic scenarios. We hope
more traffic optimization solutions can be inspired by this work for
the era of connected autonomous vehicles.
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