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Scalable Building Height Estimation from Street
Scene Images

Yunxiang Zhao , Jianzhong Qi , Flip Korn , and Xiangyu Wang

Abstract—Building height estimation plays an essential role in
many applications such as 3D city rendering, urban planning, and
navigation. Recently, a new building height estimation method
was proposed using street scene images and 2D maps, which is
more scalable than traditional methods that use high-resolution
optical images, RADAR, or LiDAR data, which are proprietary or
expensive to obtain. The method needs to detect building rooflines
to compute building height via the pinhole camera model. We
observe that this method has limitations in handling complex
street scene images where buildings occlude each other or are
blocked by other objects such as trees since rooflines can be
difficult to locate. To address these limitations, we propose a
robust building height estimation method that computes building
height simultaneously from street scene images with an orienta-
tion along the street and images facing the building with an
upward-looking view. We first detect roofline candidates from
both types of images. Then, we use a deep neural network called
RoofNet to classify and filter these candidates and select the
best candidate via an entropy-based ranking algorithm. When
the true roofline is identified, we compute building height via
the pinhole camera model. Experimental results show that the
proposed RoofNet model yields a higher accuracy on building
corner and roofline candidate filtering compared with state-of-
the-art open-set classifiers. Our overall building height estimation
method outperforms the baseline by up to 11.9% in accuracy and
achieves 92.8% in height estimation error within 4 meters on the
collected data set.

Index Terms—Building Height Estimation, Camera Location
Calibration, Open Set Classification, Deep Neural Networks

I. INTRODUCTION

Building height is important in many applications, such
as 3D city rendering for VR/AR applications [1], urban
planning [2], and navigation [3], [4]. For example, building
heights are useful to identify prominent buildings on a block,
which can then be used to facilitate navigation via instructions
such as “Turn left at the five-story building.”

Previous approaches to building height estimation are
mainly based on high-resolution optical images [5], [6], syn-
thetic aperture radar (SAR) [7], [8], [9], and Light Detection
and Ranging (LiDAR) [10], [11], [12]. Such data are expensive
to obtain, and hence the above approaches are not feasible at a
large scale let alone for all buildings on earth [10]. Moreover,
such data is often proprietary and publicly unavailable.
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Fig. 1. (a) Building A’s rooflines are hard to detect due to the overlapping with
building B while building A’s corners can help figure out the true roofline.
Red arrows: building rooflines; Blue arrows: building corners. (b) Building
A’s roofline is easier to detect but the estimated height is sensitive to GPS
errors due to its close distance to the camera.

Recently, lower-resolution street scene images, such as
Google Street View [13], together with 2D maps, such as
OpenStreetMap [14], have become ubiquitous and have been
applied to building height estimation. Estimating building
height from street scene images relies on accurate detection of
building rooflines, which then enables computation based on
camera projection. However, the existing methods for roofline
detection are not robust to occluded buildings since they
consider only roofline segments [15], [16]. As Fig. 1a shows,
the roofline of building B may be detected as the roofline of
building A because the rooflines of adjacent buildings may be
parallel to each other and have similar colors.

In this paper, we present a robust and scalable algorithm
to estimate building height using multi-sampled street scene
images. Given a 2D map such as OpenStreetMap, our algo-
rithm automatically fetches all the street scene images from
a map API such as Google Maps. To estimate the height of
each building, we simultaneously consider two types of street
scene images containing the building:
• Images with an orientation along the street (cf. Fig. 1a).

We detect both building corners and rooflines from such
images to compute the building height. Corners of different
buildings do not share the same coordinates, and it is
easier to associate them with different buildings. Building
heights computed from these images tend to be accurate if
the true roofline is detected. However, due to the building
overlapping and blocking (e.g., by trees), the true roofline
of a building may not be detected from such images.

• Images facing the building with an upward-looking view (cf.
Fig. 1b). We capture both “slanted” building features and
rooflines to compute the building height. Building heights
estimated from these images can avoid drastic errors due
to overlapping or blocking objects. However, the estimated
heights may be inaccurate due to GPS errors compounded
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by the close distance of the camera location to the building.

To take advantage of both types of images while avoiding
their limitations, we jointly learn the building height based
on both types of images. The heights from images facing the
building help to eliminate large estimation errors, while the
heights from images with an orientation along the street help
to obtain an accurate result.

In the process above, when locating the roofline and corner
candidates, we fetch two sets of image segments that contain
building rooflines and corners, respectively. To filter each set
of objects and identify the true roofline and corner images,
we propose a deep neural network model named RoofNet.
Building corners have a limited number of patterns (e.g., “ ”,
“ ”, “ ”, and “ ”), while non-corner images (e.g., trees, lamps,
or power lines) may have any pattern, which should be filtered
out. The same applies to the building rooflines. Classifying
images into different building corner (roofline) classes and
non-corner (non-roofline) class is an open-set classification
problem, since the non-corner (non-roofline) images do not
have a unified pattern and may contain unseen patterns, where
traditional deep neural networks may wrongly recognize it as
one of the known classes. To solve this problem, RoofNet
learns embeddings of the input images, which minimize the
intra-class distance and maximize the inter-class distance.
Following the design of FaceNet [17], it then differentiates
different classes using a Support Vector Classification (SVC)
model on the learned embeddings. When a new image segment
comes, the trained SVC model tells whether it falls into
any corner (roofline) classes. If the image does not fall into
any corner (roofline) classes, it is a non-corner (non-roofline)
image and can be discarded.

When estimating building height via the pinhole camera
model, the GPS errors on the camera locations have a strong
negative impact on the estimation accuracy. We thus calibrate
the camera location before roofline detection. To achieve
this, our model first detects candidate regions of all building
corners in street scene images by matching buildings in street
scene images with their (latitude and longitude) footprints
in 2D maps based on the imprecise camera location from
GPS. Then, it uses RoofNet to classify the corner candidates
and remove those images classified as non-corners. From the
surviving corners, our model selects two that are most likely
the true corners of a building (detailed in Section IV-B) to
triangulate the camera location via the pinhole camera model.
We summarize our contributions as follows:

C1. We propose an algorithm for large-scale street scene im-
age collection. The algorithm automatically detects all the
locations within a given 2D map that have street scene
images taken and fetches such images from street scene
image service APIs.

C2. We propose a building height estimation algorithm that
learns the height from roofline candidates from two corre-
sponding street scene images: (a) with an orientation along
the street and (b) facing the building with an upward-
looking view. Experiments on real-world data sets show that
our model outperforms the state-of-the-art building height
estimation method via street scene images by up to 11.9% in

building height estimation accuracy, and enables (accurate)
estimation of tall buildings, which was not possible before.

C3. We model building corner and roofline detection as an open-
set classification problem and propose a novel deep neural
network named RoofNet to solve the problem. RoofNet
learns embeddings of the input images, which minimize the
intra-class distance and maximize the inter-class distance.
Experimental results show that RoofNet achieves higher
accuracy on building corner and roofline identification com-
pared with existing open-set classifiers.

C4. We propose an entropy-based ranking algorithm to select the
roofline candidate for building height estimation. For images
with an orientation along the street, the algorithm considers
features of both building corners and roofline candidates. For
images facing the building with an upward-looking view, the
algorithm considers features of roofline candidates and the
slanted and partially visible building.

C5. We propose a camera location calibration algorithm with
an analytical solution when given the locations of two
building corners in a 2D map (a highly accurate result
can be guaranteed when given valid building corners from
RoofNet).
This paper is an extended version of our previous con-

ference paper [18]. In this journal extension, we make new
contributions: C1, presented in Section III-B, plus C2 and
the latter part of C4, both in Section V-B. In addition, we
provide algorithm cost analysis in Section V-E, experiments
on the large-scale street scene image collection algorithm in
Section VI-B, a new open-set baseline [19] to be compared
with RoofNet in Section VI-C, experiments on the improved
building height estimation algorithms over larger data sets in
Section VI-D, error analysis in Section VI-E, and sensitivity
analysis in Section VI-F.

In particular, street scene images in our conference paper
were manually collected. In this extension, we propose a
street scene image collection algorithm for large-scale pro-
cessing (C1). To detect building rooflines, our conference
paper considers street scene images with an orientation along
the street, which may still miss the roofline of a building
occluded by other buildings or blocked by objects such as
trees. In this extension, we additionally consider rooflines from
images facing the buildings. Since buildings in such images are
slanted, our previous algorithm does not apply. We thus extend
contribution C4 to find rooflines. We then jointly learn building
height from both street scene images with an orientation along
the street and facing the building with an upward-looking view
(C2). Our new experiments show that the optimized algorithm
can better handle the blocking and overlapping problems when
estimating building height from street scene images.

II. RELATED WORK

In this section, we review studies on camera location
calibration and building height estimation. We also detail our
baseline method [15].

A. Camera Location Calibration
Camera location calibration aims to refine the camera loca-

tion of the taken images, given a rough camera position from
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GPS devices or the image localization [20], [21].
To calibrate device location in urban environments, various

approaches have been proposed using 2.5D maps (2D maps
with building height information), which can yield good local-
ization results [22], [23], [24], [25], [26]. Here, the hurdle is
the requirement of building height information for generating
2.5D maps, which may not be available for every building.
[27], [28] extract the position of building corner lines (the
vertical lines from the corner to the ground) and then find
the camera location and orientation by matching the extracted
position with building coordinates in 2D maps. This method
cannot handle buildings overlapping with each other or having
non-uniform patterns on their facades.

B. Building Height Estimation
Building height estimation has been studied using geo-

graphical data such as high-resolution images, SAR images,
and LiDAR data. Studies [29], [5], [6], [30] based on high-
resolution images (e.g., satellite or optical stereo images) esti-
mate building height via methods such as elevation comparison
and shadow detection, which may be impacted by the lighting
and weather condition when the images were taken. Similarly,
methods using synthetic aperture radar (SAR) images [7], [31],
[8], [32] are mainly based on shadow or layover analysis.
Methods based on aerial images and aerial LiDAR data [10],
[33] usually segment, cluster, and then reconstruct building
rooftop planar patches according to predefined geometric
structures or shapes [34]. LiDAR data are expensive to analyze
and have a limited operating altitude because the pulses are
only effective between 500 and 2,000 meters [11]. A common
limitation shared by the methods above is that their input
data is expensive to collect, which significantly constrains the
scalability of these methods.

[15] propose a method for building height estimation that
uses street scene images facilitated by 2D maps. Street scene
images are available from Google Street View [13], Bing
StreetSide [35], and Baidu Maps [36]. Building height es-
timation based on such data is easier to scale. The method
proposed by Yuan and Cheriyadat has four main steps: (i)
Match buildings in a street scene image with their footprints
in a 2D map via camera projection based on the camera
location that comes with the image. Buildings are represented
as “Shape” objects in 2D maps. Given a region of interest,
they download all object data of the region (an XML file),
where each building corresponds to a Shape and each corner of
the Shape corresponds to a building corner. Here, the camera
location may be imprecise due to GPS errors [37], [38]. (ii)
Triangulate the camera location via camera projection with the
extracted building corner lines from street scene images. (iii)
Re-match buildings from a 2D map with those in the street
scene image based on the calibrated camera location, and then
detect building rooflines via edge detection algorithms. (iv)
Compute building height via camera projection with camera
parameters, calibrated camera location, the height of building
rooflines in the street scene image, and building footprints in
the 2D map.

Our proposed model differs from [15] in two aspects: (1)
In Step (ii) of their method, they calibrate camera location

by matching building corner lines (from the corner down to
the ground) in the street scene image with building footprints
on the 2D map. Such a method cannot handle images in
dense/urban areas, where the corner lines of different buildings
are too close to be differentiated, or when the buildings have
non-uniform patterns/colors on their facades, which makes
corner lines difficult to recognize. Our model uses building
corners instead of corner lines, which puts more restrictions
on the references for camera location calibration, and thus
yields more accurate results. (2) In Step (iv) of their method,
they use a local spectral histogram representation [39] as the
edge indicator to capture building rooflines and then compute
the building height, which can be ineffective when buildings
overlap with each other. Our model uses RoofNet, a deep
neural network that we designed to learn a latent representation
of building rooflines for filtering invalid roofline candidates.
Moreover, instead of only using street scene images with an
orientation along the street to estimate the height of a building,
we further use images facing buildings with an upward-looking
view and learn the building height from two types of images.

III. OVERVIEW OF THE PROPOSED MODEL

We present the overall procedure of our proposed model in
this section. To make the proposed model ready for large-scale
deployment, we then present the algorithm to harvest street
scene images automatically. We also summarize the process
of camera projection, which is the theoretical foundation of
building height estimation via street scene images.

A. Solution Overview

Given a 2D map such as a map segment from Open-
StreetMap, we first retrieve all the locations where street scene
images have been captured (e.g., the location of an image
captured by a Google Street View car), which is detailed in
Section III-B. For each such location, we obtain the corre-
sponding street scene image using its geo-coordinates. The
geo-coordinates that come with the image may be imprecise
due to GPS errors. Google Street View image is an example
of such images, and we aim to compute the height of each
building in such images. As illustrated in Fig. 2, our model
contains three stages:
• Stage 1 – Preprocessing: In the first stage, we preprocess

an input image by recognizing the buildings and computing
their sketches. There are many methods for these purposes.
We use two existing models RefineNet [40], [41] and
Structured Forest [42], [43] to identify the buildings and
compute their sketches, respectively. After this step, the
input image will be converted into a grayscale image that
contains building sketches with each pixel valued from 0 to
255, which enables identifying building rooflines.

• Stage 2 – Camera location calibration: Before computing
building height via camera projection, in the second stage,
we calibrate the camera location. This is necessary because
a precise camera location is required in the camera projec-
tion, while the geo-coordinates that come with street scene
images are imprecise due to GPS errors. To calibrate camera
location, we detect building corner candidates in street scene
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Fig. 2. Solution overview

images according to their footprints in 2D maps and their
relative positions to the camera. Then, by comparing the
locations and projected positions of (two) building corners
in the image, we calibrate the camera location via camera
projection. In this stage, we propose RoofNet to determine
whether an image segment contains a valid building corner.
RoofNet and the process of selecting two building corners
for the calibration are detailed in Section IV.
Stage 3 – Building height computation: In this stage, we
compute roofline candidates of each building from street
scene images with an orientation along the street and those
facing the building with an upward-looking view (a novel
contribution of this journal extension). Among the roofline
candidates detected, we filter out invalid ones via RoofNet
and then rank all valid roofline candidates by an entropy-
based ranking algorithm. The top-ranked roofline candidate
is most likely to be the true roofline, based on which
the building height is computed. The roofline and building
height computation process above is detailed in Section V.
Since Stage 1 is relatively straightforward, we focus on

Stages 2 and 3 in Sections IV and V, respectively. Before
diving into these two stages, we discuss our algorithm to col-
lect street scene images on a large scale (another contribution
of this journal extension) and the idea of camera projection.

B. Large-scale Street Scene Image Collection

Street scene images (both street-orientation and upward-
facing) are available from various sources such as Google
Street View, Bing StreetSide, and Baidu Maps. We take Google
Street View as an example to illustrate our image collection
algorithm, which is summarized in Algorithm 1. Google Street
View images are taken by Google Street View cars with fixed
camera parameters. To download street scene images together
with their camera geo-coordinates, we first identify the set S of
all streets within a given rectangle M (line 1) such as the blue
line segments in Fig. 3a; this involves a standard API function
call in OpenStreetMap. For each street in S, we traverse it
with a step length of 3 meters – the typical distance between
image captures in Street View – to obtain a set of sample
points P (lines 2 and 3). For each point p ∈ P , we send a

Algorithm 1 Large-scale street scene image collection
Input: 2D map M
Output: street scene images I

1: S ← GetAllStreets(M );
2: for street s in S do
3: P ← TraverseStreet(s);
4: for point p in P do
5: o← GetNearestCameraLocation(p);
6: ⟨l, r⟩ ← GetTwoImagesAlongStreet(o, s);
7: I.add(l);
8: I.add(r);
9: if IsFacingBuilding(o,M ) then

10: F ← GetImagesFacingBuilding(o, M );
11: for image f in F do
12: I.add(f );
13: return I;

request to the Google Maps API with its geo-coordinates. The
API returns the geo-coordinates of location o (with a street
scene image) that is the nearest to the requested point p (lines
4 and 5). The geo-coordinates of the camera location o may
contain GPS errors, and we address this issue in Section IV.

At each location o as specified by the geo-coordinates
returned by Google Maps API, we request two street scene
images, one for each side of the street (line 6, cf. the red
arrows in Fig. 3b). This is feasible as Google Maps API allows
setting the camera orientation when requesting street scene
images. Further, if o is in front of a building, we request one
more image where the camera orientation is perpendicular to
the building with an upward-looking view (line 9, cf. the blue
arrows in Fig. 3b, detailed in Section V-B). In Fig. 3b, location
o1 is in front of both buildings B1 and B2. We request one
more image for both buildings B1 and B2 at o1. Location o2
is in front of B2 only. We only request one more image for
B2 at o2. All the images obtained, denoted by I, will be used
for roofline detection and building height estimation, which is
detailed in Section V.

In our instances, the time required for image collection was
small enough that we did not optimize the traversal order
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Fig. 3. (a) Streets (blue lines) and buildings (green lines) within a 2D map.
(b) Camera locations from Google Maps API along a street.

of points. However, an order that preserves spatial locality,
e.g., via space-filling curves, should be more efficient given
caching and prefetching strategies employed by most maps
API backends. Furthermore, while parallelism was not needed
in our instances, this could be exploited to speed up image
collection where a balanced partitioning of points on the map
should yield the best performance.

C. Camera Projection

We use Fig. 4 to illustrate the idea of camera projection and
the corresponding symbols. In Fig. 4, there are two coordinate
systems, i.e., the camera coordinate system and the image
plane coordinate system. Specifically, {o′, x′, y′, z′} represents
the camera coordinate system, where origin o′ represents the
location of the camera. The camera is set horizontal to the sea
level, which means that plane x′z′ is vertical to the building
facades while the y′-axis is horizontal to the building facades.
We use {o, x, y} to represent the image plane coordinate
system, where origin o is the center, and plane xy is parallel
to plane x′y′.

B2

B1

h

 r

  b

 c
h'r

h'b
z' 

x' 

y' 

d

Image plane coordinate system 
Camera coordinate system (with prime) 

hr

hb

o' 
d

cz cn 
cx 

x 

y 

f 
o 

Fig. 4. Geometric variables in the camera and the image coordinate systems.

In Fig. 4, there are two buildings B1 and B2 projected onto
the image. For each building, we use lr, lb, and lc to represent
the roofline, the floor, and the line on the building projected
to the x-axis (centerline) of the image plane xy. Corners cn,
cx, and cz are the corner nearest to the camera, the corner
farthest to the y-axis of the image plane when projected to the
image plane (along the x-axis), and the corner closest to the
y-axis of the image plane when projected to the image plane
(along the z-axis). The height h of the building is the sum
of the distance between lr and lc and the distance between lc
and lb. These two distances are denoted as h′

r and h′
b, and the

projected length of h′
r in the image plane xy is denoted by

hr. Since the camera is horizontal to the sea level, the height
of h′

b is the same as the height of the car or human beings
who captured the image, which can be regarded as a constant.

Let d be the horizontal distance from the camera location o′

to corner cn, d̂ be the projected length of d onto the z′-axis,
f be the focal length of the camera (i.e., the distance between
the image center o and the camera center o′). Based on the
pinhole camera projection, the height of a building is:

h = h′
r + h′

b = hr · d̂/f + h′
b (1)

In this equation, the focal length f comes with the input
image as its metadata. The distance d̂ is computed based on
the geo-coordinates of the building and the camera, as well as
the orientation of the camera from Google Street View. The
geo-coordinates of the building are obtained from an open-
sourced digital map, OpenStreetMap. The geo-coordinates and
the camera orientation come with the input image from Google
Street View. Due to GPS errors, we describe how to calibrate
the camera location in Section IV. Due to GPS errors, we
describe how to calibrate the camera location in Section IV,
which takes a building height value h′

r computed based on
the position of the roofline lr, as discussion in Section V. The
frequently used symbols in the rest of the discussion can be
found in Appendix A.

IV. CAMERA LOCATION CALIBRATION

When applying camera projection for building height esti-
mation, we need the distance d̂ between the building and the
camera. Computing this distance is based on the locations of
both the building and the camera. Due to GPS errors, we first
calibrate the camera location in this section.

A. Key Idea

We use two building corners in a street scene image with
known real-world locations for camera location calibration. To
illustrate the process, we project Fig. 4 to a 2D plane, as shown
in Fig. 5a, and assume that corners cn of buildings B1 and
building B2 are the two (closest) reference corners.

(x,y)

(x’,y’)

(a) (b)

Fig. 5. (a) Geometric variables of Fig. 4 in plan-view. (b) The left building
shows the formation of corner cn and cz , while the right building illustrates
how to find corner candidates.

We consider a coordinate system with corner cn of building
B1 as the origin, and the camera orientation as the y-axis. Let
θ1 and θ2 be the angles of corner cn of B1 and corner cn of B2

from the orientation of the camera, respectively. Then, the ratio
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of d2/d3 is determined by the position of these two reference
corners in the image. Let θ3 be the angle between the line
connecting corner cn of B1 and B2 and the x-axis. This angle
can be computed according to the camera’s orientation and the
relative locations of the two reference corners in 2D maps.
Thus, we can compute the coordinates (x, y) of corner cn
of building B2 in the coordinate system. With θ1, θ2, and the
coordinate (x, y), we compute the y-coordinate of the camera:

|y′| = |x| − |y| · tanθ1
tanθ1 + tanθ2

(2)

Further, the x-coordinate of the camera is x′ = y′ · tanθ2.
Coordinates (x′, y′) yield the relative position of the camera to
corner cn of building B1. Thus, to compute (x′, y′) for camera
location calibration, the key is to match two building corners
with their positions in the image.

The real-world locations of building corners are obtained
from 2D maps, and we need to locate their positions in the
street scene image based on the (inaccurate) geo-coordinates
of the camera. For a pinhole camera, matching a 3D point in
the real world to a 2D point in the image is determined by a
3×4 camera projection matrix as follows:

α · p = [I|03]
[
Ro t
0T3 1

] [
p′

1

]
, I =

f 0 0
0 f 0
0 0 1

 (3)

where a real-world point p′ = (x′, y′, z′)T is projected to
its position p = (x, y, 1)T in the image plane; α is a scalar
that translates pixel scale into millimeter scale [44]; [I|03] is
the camera matrix determined by focal length f , where 03
is [0, 0, 0]T ; Ro is the camera rotation matrix; and t is a 3-
dimensional translation vector that describes the transforma-
tion from real-world coordinates to camera coordinates.

Since image geo-coordinates may be inaccurate, we can
only compute rough locations of the building corners. Based
on the rough position of each corner, we then iteratively
assume a height h′

r for each building to obtain the gradient
of its rooflines, as shown in Fig. 5b. We use 120 × 120 sub-
images with the horizontal position and the assumed height
of the corner as their center for building corner detection. A
building corner consists of two rooflines or a roofline with a
building corner line, as shown in Fig. 5b. For each building,
we only consider its corners cn and cz . There are three types
of formation for corner cn as illustrated by the red lines on
the left-hand side building in Fig. 5b, and there is one type
of formation for corner cz as illustrated by the blue lines.
Based on the detected building corner candidates, we use
RoofNet described in Section IV-B to filter out non-corner
image segments, and then select the two reference corners
which are discussed in Section IV-C.

We assume the camera location error from Google Maps
API to be less than three meters due to its camera location
optimization [45]. If the camera location that we compute is
more than three meters away from the one provided by Google
Maps API, we use the camera location from Google Maps API.

B. RoofNet
We formulate building corner detection as an object clas-

sification problem [46], which first detects candidate corner

regions for a building by a heuristic method and then classifies
them into different types of corners or non-corners.

We classify images that may contain building corners into
five classes. The first four classes correspond to images con-
taining one of the four types of building corners, i.e., corners
cn and cz of left-hand side and right-hand side buildings (“

”, “ ”, “ ”, and “ ”), respectively. The last class corresponds
to non-corner images that may contain any pattern except
the above four types of corners (e.g., trees, lamps, or power
lines), which should be filtered out. Such a classification
problem is an open-set classification problem in the sense
that the non-corner images do not have a unified pattern and
will contain unseen patterns, whereas traditional deep neural
networks may wrongly recognize it as one of the known
classes. To solve this problem, we build a classifier that only
requires samples of the first four classes in the training stage
(can also take advantage of non-corner images), while it can
classify all five classes in the testing phase. To enable such
a classifier, we propose the RoofNet model based on LeNet-
5 [47] architecture (which consists of 7 convolution layers
for recognition of handwritten and machine-printed characters)
plus our proposed triplet relative loss function. More details
of the RoofNet architecture can be found in Appendix B.
RoofNet learns embeddings that map potential corner region
image segments to a Euclidean space where the embeddings
have small intra-class distances and large inter-class distances.

Fig. 6. RoofNet architecture: xt, and xp are corner images within the same
type; xn is an image of another type or non-corner; x is a testing image.

1) Triplet Relative Loss Function: As shown in Fig. 6,
an input of RoofNet contains three images. Two of them
(xp and xt) contain the same type of corner, and we name
them the target (xt) and a positive sample (xp), respectively.
The third image xn contains another type of corners (or a
non-corner if available), and we name it a negative sample.
RoofNet learns to map its inputs to dR-dimensional (a system
parameter) embeddings based on our proposed triplet relative
loss function inspired by the Triplet-Center Loss and the
FaceNet [17], [48], [49], [50], which minimizes the distances
within the same type of corners and maximizes the distances
between different types of corners as:

LR=

N∑
i=1

(
β·||fR(xt

i)−fR(x
p
i )||

2
2+(1−β)·

||fR(xt
i)−fR(x

p
i )||22

||fR(xt
i)−fR(xn

i )||22

)
(4)

where β ∈ [0, 1] is the weight of intra-class distance in
the dR-dimensional (Euclidean) embedding space; (1 − β)
is the weight of the ratio between intra-class distance and
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inter-class distance, which aims to separate different classes
in the embedding space; N is the cardinality of all input
triplets. Function fR(·) computes the dR-dimensional embed-
ding of an input image, and we normalize the embedding to
||fR(x)||22 = 1. Different from existing loss functions based
on triplet selection [51], [17], our triplet relative loss can
minimise the intra-class distance and maximize the inter-class
distance by means of their relative distance.

2) Hard Triplet Selection: Generating all possible image
triplets for each batch during the training process will result
in a large volume of unnecessary training data (e.g., xt and
xp are too similar, while xn is way different). It is crucial to
select triplets that contribute more to the training phase. We
assign a higher selection probability to such triplets and thus
accelerating the convergence. The probability of selecting a
negative sample xn

i is:

p(xn
i ) =

em−||fR(xn
i )−fR(xt)||22∑kn

i=1 e
m−||fR(xn

i )−fR(xt)||22
, i = [1, kn]

m=min{∀i∈[1,kn]||fR(x
n
i )−fR(xt)||22−||fR(xt)−fR(xp)||22}

(5)

where kn is the total number of negative samples in a batch.
After randomly choosing xt and xp for a triplet, we compute
the Euclidean distance between (the embeddings of) xt and xp,
as well as that between xt and the k negative samples xn in
the batch. Let m be the minimum Euclidean distance between
(the embeddings of) xt and any xn, and the Euclidean distance
between xt and xp, which can be positive or negative. Then,
a negative sample xn

i that is more similar to xt will have a
higher probability to be selected.

After the training process, we obtain a dR-dimensional
embedding for each input image. We then learn a support
vector classifier [52] based on these embeddings for corner
region image classification.

C. Entropy-based Ranking

RoofNet can filter out non-corner images. Among the
remaining corner candidates, we select two corners as the
reference corners. Reference corner selection relies on multiple
factors: the length and edgeness (i.e., the thickness of a line,
detailed in Section V) of the lines forming the corner, the
number of other corner candidates (cn, cx, and cz) of the
same building with the same assumed height, and the position
of the corner in the image. We consider the position of
corners because, empirically, corners close to one-quarter or
three-quarters (horizontally) of the image yield more accurate
matching between their positions in the image and their foot-
prints in 2D maps. We also consider their real-world locations
because a corner close to the camera will be clearer and yield
higher accuracy when matching them to their footprints in 2D
maps. Therefore, we score the corner candidates by:

[sc1 , ..., sck ]
T =

λ1, ω1, τ1, ρ1, d1|c1
...

λk, ωk, τk, ρk, dk|ck

 ·
wλ

...
wd

 (6)

where k is the number of corner candidates from all buildings;
ci is the ith corner candidate; sci is the score of ci; λi is the

detected length of the two lines that form ci, while ωi is the
sum of the edgeness of the two lines; τi is the number of other
corner candidates of the same building with the same assumed
height as ci; ρi is the minimum distance from ci to a quarter
or three-quarters of the image, and di is the distance from ci
to the camera. wλ, wω , wτ , wρ, wd are the weights of these
parameters. Parameters λi, ωi, τi and ρi correlate with score
sci positively, while di correlates with sci negatively.

(a) (b) (c)

Fig. 7. (a) Two buildings (pointed to by the two red arrows) overlapping with
each other. (b) A heuristic method for roofline candidate detection. (c) The
mask of detected buildings.

We use an entropy-based ranking algorithm to compute the
weights (wλ, ..., wd)

T . Shannon entropy is a commonly used
measurement of uncertainty in information theory [53]. The
main idea of the entropy-based ranking is to compute the
objective weights of different parameters according to their
value distribution. In particular, if the values of a parameter
among all samples vary greatly, then the parameter is consid-
ered an important one. Otherwise, the parameter is considered
less important because it cannot provide much information for
distinguishing different samples.

The input of entropy-based ranking is a decision matrix with
the size of ns×np, where np is the number of indicators and
ns is the number of samples. For building corner classification,
there are np = 5 indicators (λ, ω, τ, ρ, d) and ns = k samples.
We denote the decision matrix as R, where Rij is the value
of the ith sample under the jth indicator. Before applying the
entropy-based ranking algorithm, we preprocess R by Min-
max scaling as follows:

Rij=


(Rij−min

j
(Rij))/(max

j
(Rij)−min

j
(Rij)), iff P

(Rij−min
j

(Rij))/(max
j

(Rij)−min
j

(Rij))+1, iff N
(7)

where ‘P’ and ‘N’ denote that the jth indicator is positively
and negatively correlated with score s, respectively. After
scaling, the entropy of each indicator is computed as:

ej = − ln(ns)
−1 ·

ns∑
j=1

R′
ij · ln(R′

ij), R
′
ij = Rij/

ns∑
j=1

Rij (8)

where R′ is a normalized version of R. We then compute the
weight of each indicator based on its entropy by:

wj = (1− ej)/(np −
ns∑
j=1

ej), j = [1, np] (9)

After computing the weight of each indicator, we apply
them to Equation 6 and rank all corner candidates by their
scores to obtain the best two as the reference corners.
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V. BUILDING HEIGHT ESTIMATION

Building height estimation requires detecting the roofline
of each building. We first present an algorithm to detect
rooflines from street scene images taken with an orientation
along the street (images facing the street for short hereafter)
in Section V-A. With the help of building corners, rooflines
detected from such images often offer building height estima-
tions with high accuracy. However, buildings in such images
can overlap with each other (cf. Fig. 7a), where the rooflines
may be shadowed. To address the overlapping issue, we detect
rooflines from street scene images facing the buildings in
Section V-B, which are less likely to have overlapping. We
then present the method for learning the building height via the
rooflines computed from both types of images in Section V-C.
We also present a strategy to handle tall buildings (over 100
meters) in Section V-D.

A. Rooflines from Images Facing the Street

We first present the roofline detection algorithm for street
scene images facing the street, followed by the corresponding
roofline classification and ranking algorithm.

Algorithm 2 Roofline preprocessing
Input: buildings B, tree area T, edge map E
Output: updated buildings B

1: M = null;
2: for building b ∈ B do
3: for roofline candidate lri of b.lr do
4: // traverse all roofline candidates of b.lr;
5: lri(ini) = lri ;
6: λi(ini) = len(lri);
7: for pixel p ∈ lri do
8: if Mask(p) then
9: lri .delete(p);

10: for pixel p ∈ l̂r ∩ p /∈ lr∩!Mask(p) do
11: if Connected(p, lri) and T(p) then
12: lri .add(p);
13: // update the length and edgeness of lri ;
14: λi = len(lri);
15: ωi = λi/λri(ini) · E(lri(ini));
16: ComputeScore(b); // compute the score of all roofline

candiadtes of building b via Equation 11.
17: ComputeHeight(b);
18: M .add(b); // add the scope of building b.
19: return B;

1) Roofline Candidate Detection: We consider the roofline
from corner cn to the corner next to cn, along the positive
direction of the x′-axis in the camera coordinate system, and
the roofline from corner cz to the corner next to cz along
the negative direction of the z′-axis in the camera coordinate
system. The corner between corner cz and corner cx is corner
cn if they are adjacent to each other, as shown in Fig. 4, and
we take this situation to simplify the explanation. Similar to
corner candidate detection, as shown in Fig. 7b, we detect all
roofline candidates of each building by a heuristic method,

which projects the rooflines of each building to the image
according to its relative location to the camera in the real
world, together with the camera’s parameters. To do so, we
first assume h′

r of a building to be the maximum height that
can be captured, which means that at least one corner (cn,
cx, or cz) is visible in the image. If corner cn is visible, the
maximum height computed via pinhole camera projection is:

hr = d̂ · (hI/2f) (10)

where hI is the height of the street scene image; d̂ is the
distance from corner cn to the camera projected to the z′-axis
of the camera coordinate system. If corner cn is invisible, we
use cz as the reference corner when computing the maximum
height of a building in the same way. Using the maximum
height of the building, we compute the position of corner cn,
cx, and cz in the image. We then apply Hough transform
to the input building sketches in Fig. 2 to detect roofline
candidates. The roofline candidates from cn to cx need to
match the computed position of cn and cx. Similarly, the
roofline candidates from cn to cz need to match the computed
position of cn and cz . Instead of using the typical Hough
transform for line detection, which takes binarized images as
the input, each pixel in our algorithm has a value between 0
and 255 and we sum the value of all pixels within a line as its
weight. We name the summed value as edgeness of a roofline
candidate, which reflects the visibility of a line in the edge
map. We iteratively reduce the assumed height with a step
length of 0.5 meters until h′

r=0 and collect all candidates.
Similar to reference corner detection, we formulate the

roofline detection as open-set classification and ranking.
2) Roofline Candidate Classification and Ranking: There

are three types of rooflines: (i) Roofline from cn to cx; (ii)
Roofline from cn to cz of the left hand side buildings; (iii)
Roofline from cn to cz of the right hand side buildings, as
shown in Fig. 5b. We use RoofNet to filter these candidates
and find the valid roofline candidates, which is similar to the
corner candidate validation process described in Section IV-B.
For each roofline lr, we then weight each of its candidate lri by
its detected length λi, edgeness ωi, and the number of corners
τi of the same assumed height from the same building. We
rank all valid roofline candidates via the entropy-based ranking
algorithm in Section IV-C as:

[slr1 , ..., slrk ]
T =

λ1, ω1, τ1|lr1
...

λk, ωk, τk|lrk

 ·
wλ|lr
wω|lr
wτ |lr

 (11)

where k is the number of roofline candidates; lri is the
ith roofline candidate; slr1 is the score of the ith roofline
candidate. wλ|lr, wω|lr and wτ |lr are the weights of these
parameters based on all candidates of lr, and all three param-
eters are positively correlated with score s. The value of τi
depends on the number of corner candidates of cn, cx, and cz
of the same assumed height as lr, i.e., τi ∈ {0, 1, 2, 3}.

Different from building corners, which can only be either
visible or invisible, rooflines can be partially blocked by other
objects (e.g., trees). Therefore, before applying the ranking
algorithm, we preprocess the length λi and the edgeness ωi of



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, XX 2022 9

a roofline candidate lr which may be affected by the blocking
via Algorithm 2, where buildings are ordered by whether they
have a detectable corner, and then their distance to the camera.

When estimating building height, we first separate buildings
into two classes: (i) buildings with at least one valid corner
candidate, which we have a higher confidence in detecting its
true outline. (ii) buildings without any valid corner candidate.
Then, we process buildings in Class i according to their
distances to the camera. After all the buildings in Class i have
been processed, we process the buildings in Class ii according
to their distance to the camera.

After we obtain the height of a building, we mark the scope
of the building in the street scene image, as shown in Fig. 7c
(i.e., when its height has been obtained). For each detected
candidate lri of roofline lr of a building, we refine lri by (i)
removing each pixel p ∈ lri that falls outside the building
scope (lines 7 to 9 of Algorithm 2) and (ii) extending (i.e.,
adding pixels to) lri to ˆlri until ˆlri reaches the boundary of
the building (lines 10 to 12). This refinement process filters
false positive pixels and adds back pixels that might have been
blocked by trees. We then use the updated lri to compute its
length λi (line 14) and its edgeness ωi (line 15). Formally,

λi = λi(ini) −
∑
p∈lri

Mask(p) +
∑

p ∈ ˆlri

T(p)

ωi = λi/λri(ini) · E(lri(ini))

= (λi/λi(ini)) ·
∑
p∈lri

E(p) · (1−Mask(p))

(12)

where λi(ini) denotes the initially detected length of lri .
Function Mask(p) checks whether a pixel p within lri goes
beyond the building’s scope. Function T(p) checks whether a
pixel p, which is in the extended line ˆlri , is blocked by trees.
If there exists such pixels and they connect to the detected
roofline segment, we add them to lri . Function E calculates
the number of pixels on a line to overlap with the detected
building sketches (cf. Fig. 2).

B. Rooflines from Images Facing the Building

Next, we present an algorithm to detect rooflines from
images facing a building with an upward-looking view. Such
images are taken close to a building. Buildings in such images
are slanted and maybe only partially visible, which pose new
challenges in roofline detection.

1) Roofline Candidate Detection: To obtain roofline candi-
dates from images facing the buildings, we fetch street scene
images by setting the camera with an upward-looking view to
reach a building’s roof. The default upward-looking angle is
25 degrees, as shown in Fig. 8a. If this fails to capture the
full building (as flagged by the building recognizer shown in
Fig. 2), we then set the upward-looking angle as 45 degrees.
Google’s devices capture a view range of 90 degrees. Thus, an
upward-looking angle of 45 degrees (Fig. 8a), can reach the
roof of buildings of any height. Given images with an upward-
looking view, the roofline is shrunk, and the building corner
lines are slanted (Fig. 8b). For roofline candidate detection
in such images, we only compute the roofline candidates that
connect cn and cz because cx is invisible.

25o

Camera direction

45o

Camera view angle

(a) a (b) b (c) c

Fig. 8. (a) Camera upward-looking views of 25 degrees and 45 degrees.
(b) A street scene image with an upward-looking view of 25 degrees facing
the building, where the yellow solid line denotes a candidate of the roofline.
The red box at the right bottom denotes the street scene image with the
same camera location but with a horizontal view, where the building’s roof
is invisible. (c) The corresponding image of Fig. 8b after being transformed
to a horizontal view.

As discussed in Section V-A1, roofline candidate detection
is based on an assumed height h′

r of the building. The pinhole
camera projection defined by Equation 3 is inapplicable for
a slanted building directly. Therefore, we first compute a
plane-to-plane homography [54], which maps an image of an
upward-looking view to an image of a horizontal view, as
shown in Fig. 8c. Here, we use the homogeneous estimation
method [55], which solves a 3×3 homogeneous matrix H that
matches a point in an upward-looking image to a horizontal
view image as:

A ·H =


x1 y1 1 0 0 0 −x1X1 −y1X1 −X1
0 0 0 x1 y1 1 −x1Y1 −y1Y1 −Y 1

...
...

...
...

...
...

...
...

...
xn yn 1 0 0 0 −xnXn −ynXn −Xn
0 0 0 xn yn 1 −xnYn −ynYn −Y n

 ·H = 0 (13)

where the homogeneous matrix H (|H| = 1) is represented
in vector form as H = (H11, H12, H13, H21, H22, H23, H31,
H32, H33)

T ; (Xi, Yi) represents a point in the upward-looking
image, and (xi, yi) represents the corresponding point in the
resultant image of a horizontal view. Parameter n denotes the
number of point pairs ((Xi, Yi) and (xi, yi)), and n ≥ 4;
By linear algebra, the vector H that minimizes the algebraic
residuals |AH|, subject to |H| = 1, is given by the eigenvector
of least eigenvalue of A ·AT .

Using the homogeneous matrix H , we adapt the roofline
candidate detection method in Section V-A1 as follows. We
first transform the image into a horizontal view (cf. Fig. 8c),
and we treat the height h′

r of a building to be 0 in the image,
which is the same as that of Google’s device (e.g., 3 meters for
the camera on a Google Street View car). We then compute the
roofline’s position as detailed in Section V-A1. Next, we use
the homogeneous matrix H to map the roofline’s position back
to that in the original image with an upward-looking view.
Similar to Section V-A1, we iteratively increase the assumed
height with a step length of hc/d̂ meters until the roofline
reaches the sky and collects all roofline candidates. Here, hc

denotes the currently assumed height of the building. Note
that when hc increases, even though the step length in the
transformed image is a constant, that in the original image
is increasing. This is because, when the iterative process gets
closer to the top of the image, each pixel in the transformed
image represents a larger physical distance (Fig. 8b).

2) Roofline Candidate Ranking : In images facing the
building, the line candidates become less visible (thinner)
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with the increase of buildings’ height, since the buildings
are slanted in such images. The entropy-based ranking in
Section IV-C does not yield strong results in this case. To
address this issue, based on the roofline candidates from cn to
cz for each building, we adapt the entropy-based ranking in
Section IV-C for roofline candidate ranking as follows.

As shown in Fig. 8b, for each candidate lri , we again denote
its detected length as λi (yellow solid line), edgeness as ωi.
We further consider the visible length of the building’s roofline
according to the assumed height h′

r of the candidate, denoted
as λvi (yellow solid line plus the extended dashed line to the
left boundary of the image). We denote the true length of the
building’s roofline computed according to the assumed height
of the candidate as λti (yellow solid line plus the extended
dashed line that exceeds the image), and the proportion of λvi

close to the sky as λsi (λsi equals to λvi in Fig. 8 because all
pixels in line λvi are connecting to the sky area). We rank all
candidates by computing their scores:

[slr1, ...,slrg]
T=

ω1/λ1, λ1/λv1, λv1/λt1, λs1|lr1
...

ωg/λg, λg/λvg, λvg/λtg, λsg|lrg


wω/λ|lr

...
wλs
|lr

 (14)

Here, g is the number of candidates; lri is the ith roofline
candidate; slr1 is the score of the ith roofline candidate; ωi/λi

denotes the averaged edgeness; λi/λvi denotes the ratio of
the detected length over the visible length of the roofline in
the image (fully detected rooflines are preferred), and λvi/λti

denotes the ratio of the true roofline visible in the street scene
image (a larger value denotes a more fully visible roofline
candidate which is preferred). wω/λ|lri , ..., wλs

|lri are the
weights of these parameters based on all candidates of lr, and
they are positively correlated with score slri .

C. Estimating Building Height from Rooflines

After obtaining the roofline candidates from both images
facing the street and facing the building, we compute a set
of heights for each building according to Equation 1. We
denote the heights from images facing the street as Ha =
ha1

, ha2
, ..., hak

and those from images facing the building as
Hf = hf1 , hf2 , ..., hfg .

The heights in Ha tend to be close to the true building
height when a true roofline has been detected. This is because
the camera location of images facing the street is far away from
the building, and hence Equation 1 is less sensitive to the GPS
errors of the camera location. However, as discussed earlier,
buildings in such images may overlap with other buildings, and
the true roofline may be shadowed and hence some heights in
Ha are far from the true building height. On the other hand,
an image facing the building is more likely to capture the true
roofline as there are fewer overlaps. Thus, Hf is more likely
to contain heights computed from the true roofline. However,
a limitation is that they are computed based on a camera
location that is closer to the building, where Equation 1 is
more sensitive to GPS errors. Thus, these heights may be less
accurate when the buildings are high.

To obtain an accurate building height estimation from Ha

and Hf , we merge the two sets of heights into a single set

(a) (b)

Fig. 9. (a) An image with an upward-looking view. (b) The corresponding
image with a horizontal view.

H. Compared with the distribution center of Ha, that of H is
expected to be closer to the real height due to the inclusion of
Hf . Let the median of H be hm. We check whether there is a
value hfi ∈ Hf that is close to hm. If |hfi −hm| ≤ 3 ·hm/d̂,
we say that hfi and hm are close. The value 3 here is the upper
bound of GPS errors from Google’s devices as assumed in
Section IV-A after optimization. We weigh it by hm/d̂, which
denotes the error of the height estimation for a building (if the
ground truth is hm) with a 3-meter GPS error.

If there is a hfi ∈ Hf that is close to hm, we return hm

as the final height estimation result. Otherwise, we return the
height haj ∈ Ha that falls between hm and its closest value
hfi ∈ Hf . If there are multiple values in Ha that satisfy this
requirement, we return the one that is the closest to hfi .

We note that advanced algorithms such as Variational Bayes
Inference [56], [57] may offer a more accurate estimation
given a large set of heights. We did not use such algorithms
because our set H is relatively small (|H| < 20 in most
cases) due to the limited availability of street scene images
of the same building. Our experiments show that the heuristic
algorithm above yields highly accurate height estimations with
a small set of H.

D. Tall Building Preprocessing

For tall buildings, the camera needs to be placed far away
with an upward-looking view to capture the building roofline.
Also, if the camera is too close to the building, the computed
building height is highly sensitive to the GPS error, especially
for tall buildings. Therefore, we capture the street scene
images 250 meters away from the buildings facing the street
with an upward-looking view via Google Maps API. Fig. 9a
presents an example of the street scene image for tall building
height estimation.

Similar to Section V-B1, with a tall building’s footprint in
a 2D map and the camera location of a street scene image
that contains the tall building, we first transform the image
to one that has a horizontal view (Fig. 9b). We then compute
the building corners’ positions cn, cx, and cz , as those of
building 1⃝ shown in Fig. 9b, where the corners’ positions
may exceed the image. Based on the upward-looking angle,
we apply the homogeneous matrix H and map the computed
corners’ positions of a tall building back to the original image
with an upward-looking view (Fig. 9a). We then apply the
building height estimation algorithm for images facing the
street as described in Section V-A to compute the building
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height. We do not apply the height estimation algorithm in
Section V-B because tall buildings are usually fully visible in
the street-facing images already due to their large distances to
the camera location.

E. Algorithm Cost Analysis

Our proposed method has four main steps: image segmenta-
tion, building sketch computation, camera location calibration,
and building height estimation.
• The image segmentation step applies a batch-processing

strategy (process multiple street scene images at once) using
RestNet [58]. We use the number of parameters to represent
its running cost, which is around 120 million. The running
time of this step is 8.12 seconds per image on average
under our experimental setting (detailed in Section VI, same
below) using a laptop computer with a CPU, which can be
boosted by using GPU machines.

• The building sketch computation step uses a structured
forest algorithm [42], [43], which takes O(IwIhMD) time,
where Iw and Ih denote the width and the height (in terms
of the number of pixels) of an input image, while M and
D denote the number of trees and the depth of the trees,
respectively. This step takes 0.81 seconds for each image
on average.

• The camera location calibration step detects potential build-
ing corners from image segments within a street scene
image, classifies different types of corners, and calibrates
camera location via camera projection (which has a con-
stant time cost). Building corners are formed by two line
segments detected via the Hough transform (we sample Sh
points only) with an O(IhSwSh) time cost, where Sw and
Sh are the width and the height of the sub-image that we use
to compute the rooflines. Corner classification via RoofNet
is based on LeNet-5 with 60 thousand parameters. This step
takes 1.18 seconds for each image on average.

• The building height estimation step detects roofline candi-
dates for each building based on the calibrated camera lo-
cation. For this step, roofline detection via the Hough trans-
form takes the same O(IhSwSh) time as above. Roofline
classification via RoofNet is also based on LeNet-5 with
60 thousand parameters. The roofline preprocessing (Algo-
rithm 2) and the Entropy-based roofline candidate ranking
steps have lower time complexity than the Hough transform.
Their time costs are absorbed in the big-O notation. This
step takes 4.23 seconds for each image on average.

For comparison, we also present the time costs of the state-
of-the-art street view image based building height estimation
algorithm [15] (i.e., the baseline algorithm in Section VI-D).
This algorithm has two main steps, i.e., camera location cal-
ibration and building height estimation. The camera location
calibration is based on the spectral histogram algorithm, which
has an O(IhSwSh) time cost. The height estimation is based on
a voting strategy, which has an O(KS2h) time cost, where K
denotes the number of candidate camera locations computed
for each image.

We summarize the time costs of our method and that of
[15] in Table I. Empirically, the running time of our method

TABLE I
ALGORITHM TIME COST ANALYSIS

Steps Ours Baseline
Complexity Time Complexity Time

Image segmentation 120 M 8.12 s N/A N/A
Compute sketches O(IwIhMD) 0.81 s N/A N/A
Camera calibration O(IhSwSh) 1.18 s O(IhSwSh) 2.53 s
Height estimation O(IhSwSh) 4.23 s O(KS2

h) 0.41 s

to process an image is higher. Our method takes 8.12 +
0.81 + 1.18 + 4.23 = 14.34 seconds on average to process
an image, while the method by [15] takes 2.53+ 0.41 = 2.94
seconds (based on our implementation, as their source code is
unavailable). The higher running time is expected, since we
consider both building corners and rooflines while [15] only
considers rooflines. As will be shown next, we argue that our
running time cost is worthwhile, for the consistently (and up
to 11.9%) higher building height estimation accuracy obtained
by our method.

VI. EXPERIMENTS

In this section, we first show the scalability of our image
collection process. Then, we evaluate our RoofNet model for
building corner and roofline classification. We also evaluate
our model for building height estimation, followed by an error
analysis, and a parameter sensitivity analysis.

A. Data Sets

We obtain building footprints (latitude and longitude coor-
dinates) from OpenStreetMap and street scene images from
Google Street View, which have been post-processed by
Google to share the same parameters (e.g., focal length),
respectively. There may be small GPS errors in the coordinates
obtained from OpenStreetMap, which may lead to a horizontal
shift (deviation) of all the corners of a building. However, this
horizontal shift is small because all buildings are aligned by
OpenStreetMap based on their relative positions in the real
world. Also, some of the horizontal shifts can be addressed
by our camera location calibration step. We evaluated our
proposed method on the following two data sets:

(i) City Blocks, which contains two blocks (from a lot and
block survey system) in San Francisco (SF) and one in New
York (NY). The two blocks in SF contain 59 and 69 buildings,
respectively, with the first city block used in the baseline
work [15]. For the blocks in SF, we manually obtained the
building height ground truth from high-resolution aerial maps
from NearMap [59] by computing the elevation difference
between the ground and the building roofline. The block in
NY contains 954 buildings, and the building height ground
truth is obtained from NYC Open Data1. We collected all
640×640-pixel street scene images where the camera has an
orientation along the street horizontally or is facing a building
with an upward-looking view. The focal length of the camera
can be derived via the parameters provided by Google. We
do not need to consider the camera rotation matrix Ro or

1https://opendata.cityofnewyork.us/
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Fig. 10. Examples of four types of corners, three types of rooflines, and the
corresponding unlabeled images.

the translation vector t (cf. Equation 3) due to the image
preprocessing of Google Street View.

(ii) , which contains 37 buildings taller than 100 meters in
SF, Melbourne, and Sydney collected by us via Google Maps
API. We set the camera orientation along the street with an
upward-looking view (25 degrees) to capture their rooflines.
The ground truth of building height comes from Wikipedia or
is derived from aerial maps.

For building corner classification, we crop images from the
City Blocks data set (SF in specific). We generate the corner
data set semi-automatically, where we crop 28×28-pixel image
segments from the street scene images. We then manually
label whether each image segment contains a building corner
and if so, label its corner type. The training data set contains
10,400 image segments, including 1,300 images of each type
of building corner (a total of 5,200 corner images) and 5,200
randomly chosen non-corner images. The test data set contains
1,280 images, including 160 images for each type of building
corner and 640 randomly chosen non-corner images. There is
no overlap between the training and the testing sets.

We follow a similar approach for roofline detection. For
each roofline candidate, we extend the upper and lower 10
pixels of the roofline to obtain 21×λ image segments, where
λ is the length of the roofline. We then rotate each image if the
roofline is not horizontal, and resize them to 28×28 to generate
same-size inputs for RoofNet. The training set includes 7,800
image segments from the City Blocks data set (SF in specific),
including 1,300 images for each type of roofline (a total
of 3,900 roofline images) and 3,900 randomly chosen non-
roofline images. The testing set contains 960 images, including
160 images for each type of roofline and 480 randomly chosen
non-roofline images. There is no overlap between the training
and the testing sets. Fig. 10 provides examples of corner and
roofline images.

B. Efficiency of Large-Scale Image Collection

We implement the street scene image collection algorithm
described in Section III-B with MATLAB and run it on a
laptop computer with a 2.4 GHz Intel Core i5 CPU and
16 GB memory. To showcase the algorithm efficiency and
scalability, we download a 2D map for a region in SF from
OpenStreetMap. This region covers an area of 250,912 m2, and
we extract all the streets within the region. Based on the streets
in this region, we obtain 1,522 street scene images, including
both images facing streets and those facing buildings. It takes
only 24 seconds to process the map data and obtain the

parameters for downloading images via the Google Maps
API. The time for downloading the street scene images is
determined by the network speed and the 500-image-per-
second limit of Google Maps API. For us, the download time
is 99.8 seconds for the 1,522 images (65.6 milliseconds per
image). After downloading the images, we send them to our
building height estimation algorithm.

C. Effectiveness of RoofNet

Building corner and roofline classification is an open-set
classification problem where the non-corner images and the
non-roofline images do not have consistent patterns. To bench-
mark the effectiveness of RoofNet, we use four open-set clas-
sifiers as baselines: SROSR [60], OpenMax [61], CGDL [19],
and AMPF++ [62]. SROSR handles the open-set classification
problem by computing the confidence score for an input to
come from known classes based on reconstruction errors,
where an input is expected to have a low reconstruction error
on the true class it comes from. OpenMax handles the open-set
classification problem by estimating the probability of whether
an input comes from unknown classes based on the output of
the last fully connected layer of a neural network. CGDL uses
a conditional Gaussian distribution learning model based on
a variational auto-encoder (VAE) for open-set classification.
It generates class conditional posterior distributions, where
inputs of known classes tend to follow one of the prior
distributions and inputs of unknown classes tend to be in lower
probability regions. AMPF++ generates adversarial samples
that try to confuse a deep neural network-based classifier
and use such samples to train a more robust classifier to
differentiate images from known and unknown classes.

To show the effectiveness of our proposed triplet-based loss
function, we further compare RoofNet using our proposed loss
function with those using the loss functions of FaceNet [17]
and MSML [63], respectively. The original loss function in
FaceNet makes the intra-class distance smaller than the inter-
class distance by adding a margin, and the one in MSML
optimizes the triplet selection process towards selecting hard
triplets in the training phase.

TABLE II
EFFECTIVENESS OF ROOFNET

Models Corner data set Roofline data set
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

CGDL 0.702 0.551 0.509 0.476 0.612 0.495 0.476 0.454
AMPF++ 0.729 0.601 0.602 0.601 0.777 0.641 0.594 0.616
SROSR 0.870 0.781 0.787 0.783 0.732 0.597 0.709 0.557
OpenMax 0.876 0.802 0.799 0.798 0.846 0.768 0.812 0.776

FaceNet 0.875 0.799 0.804 0.799 0.828 0.742 0.778 0.750
MSML 0.883 0.812 0.819 0.813 0.836 0.754 0.820 0.765

RoofNetL 0.887 0.820 0.827 0.818 0.856 0.782 0.812 0.781
RoofNetU 0.943 0.911 0.912 0.911 0.966 0.928 0.957 0.940

Hyperparameters. For OpenMax, we first pre-train the
LeNet-5 model on the MNIST data set. We then train the
model on the building corner and roofline data sets and apply
the last fully-connected layer to OpenMax for classification.
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For CGDL, SROSR, and AMPF++, we use the default settings
of their released code.

For our RoofNet, we implement two variants: RoofNetL
and RoofNetU. Both RoofNetL and RoofNetU use LeNet-5
which is first pre-trained on the MNIST data set and then
fine-tuned on our building corner and roofline data sets. The
difference between the two model variants is that in RoofNetL,
all MNIST data are considered labeled in the pre-training
phase, while in RoofNetU, images in 5 classes are considered
labeled while the images in the other 5 classes are considered
unlabeled, i.e., from known unknown [64]. For FaceNet and
MSML, we apply their loss functions on RoofNetL. We set
the learning rate as 0.1 with the decay rate of 0.95 after every
1,000 iterations. The batch size is 30 images for each class,
the embeddings that RoofNetL and RoofNetU learn are 128-
dimensional, and β in the triplet relative loss function is 0.5.

We perform a 10-fold cross-validation on the models and
report the averaged accuracy, precision, recall, and F1 score
of the models, which are summarized in Table II.

On the corner data set, RoofNet achieves the best perfor-
mance on all four metrics. Compared with CGDL, AMPF++,
SROSR, and OpenMax, RoofNetL improves the accuracy and
F1 score by more than 1.1% and 2%, respectively. When unla-
beled data are available at training (RoofNetU), the advantage
of RoofNet is even stronger, i.e., 6% and 10% on the accuracy
and F1 score, respectively. A similar observation is made on
the roofline data set, where both RoofNetL and RoofNetU
outperform the baseline open-set classifiers consistently. More-
over, our proposed triplet relative loss function achieves state-
of-the-art performance on both corner and roofline data sets
compared with the loss functions from MSML and FaceNet.
On the corner data set, our loss function improves the accuracy
and F1 score by more than 0.4% and 0.5%, respectively.
On the roofline data set, our loss function achieves the best
performance on all evaluation metrics except the recall.

To further illustrate the effectiveness of our triplet rela-
tive loss function, we visualize the generated embeddings of
different loss functions on the corner data set in Fig. 11.
Compared with random triplet selection with margin (FaceNet)
and hard triplet selection with margin (MSML), our triplet
relative loss function obtains better classification results with
smaller average intra-class distance and larger average inter-
class distance.

(a) (b) (c)

Fig. 11. t-SNE [65] 2D embeddings of four types of corners (colored dots)
and the unlabeled data (black dots) after 100 epochs, learned by loss functions
of (a) FaceNet, (b) MSML, and (c) the proposed triplet relative loss.

D. Effectiveness of Building Height Estimation

Next, we evaluate the performance of our overall building
height estimation method.

1) Building Height Estimation for City Blocks: Results on
the full data sets. Fig. 12 shows the building height estimation
accuracy, at a variety of error tolerances, over the three city
blocks in the City Blocks data set for (a) the existing state-of-
the-art method from [15] that uses street scene images only
(denoted by “Baseline”); (b) our previous method CBHE [18]
that uses only images facing the street (i.e., the median of the
heights estimated based on such images, denoted by “Ours-
CBHE”), which is the same as those used by [15]; and (c) our
full method that uses both images facing the street and images
facing the building, as described in Section V-C, denoted by
“Ours-full”).

(a) SF city block 1 (b) SF city block 2 (c) NY city block

Fig. 12. The accuracy of the baseline method [15], our previous proposed
method CBHE [18] denoted as Ours-CBHE, and our full model denoted as
Ours-full on three city blocks.

On SF city block 1, Ours-full method has 8.3%, 4.2%, and
2.6% more buildings with height estimation errors within 2,
3, and 4 meters, respectively (cf. Fig. 12a). This confirms
the superiority of our proposed method. For Ours-CBHE, we
see that using only images facing the street does not yield
as strong results as those using both types of images (i.e.,
Ours-full). This confirms the importance of considering the
building-facing images.

We note that Our-CBHE is even worse than the baseline on
SF city block 1. This is because the results of the baseline
are from [15], while the results of our models are obtained
on images newly crawled from the same block as that used
by the baseline. The new street scene images for these blocks
have become more complex over time, as the buildings have
become more occluded due to trees in the images growing
larger (cf. Fig. 13)2. This makes the building height estimation
more challenging.

(a) Images used by the baseline (b) Images used by ours

Fig. 13. Street scene images at the same spots.

2For the same reason, the results of Ours-CBHE reported here are a bit
worse than those in our previous conference version [18], which used images
collected two years ago.
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Fig. 12b shows the result in SF city block 2 (which was not
used by [15]). As we are unable to obtain the source code of
the baseline method, the result is based on our implementation
of their method. Ours-full outperforms Baseline by 11.9%,
5.1%, and 8.5% on height estimation with errors less than 2, 3,
and 4 meters, respectively. Also, Ours-CBHE is outperformed
by Ours-full, but it is still better than Baseline overall.

Fig. 12c shows the result on the NY city block. Like on SF
city block 2, the results here are based on our implementation
of all three methods tested. Our full method again outperforms
the baseline by 7.2%, 7.1%, and 8.2% on height estimation
with errors less than 2, 3, and 4 meters. For this city block,
both proposed variants outperform the baseline. Note that the
performance of both the baseline and our methods drop on
this city block with an error of less than 2 meters. This is
because the ground truth of this data set from NYC Open Data
is computed by the elevation difference between the ground
and the highest point of the building, which is higher than the
height of the roofline for most buildings.

(a) (b) (c)

Fig. 14. Accuracy of the baseline method from [15], our previous proposed
method from [18] denoted as Ours-CBHE, and our full model denoted as
Ours-full on the NY city block for (a) buildings with height estimations from
both images facing the street and facing the building, and (b) buildings with
height estimation from images facing the street only. (c) accuracy of Ours-
building, Ours-CBHE and Ours-full on the NY city block (with only buildings
that have estimated heights from both images facing the street and images
facing the building).

Results on buildings with both street-facing and
building-facing images. In the experiments with the full data
sets above, not all buildings have been captured in both street-
facing and building-facing images. To show the full benefit
of our method using both types of images, we further report
results for only the buildings with both types of images, in
Fig. 14a. In this case, Ours-full outperforms the baseline by
9.4%, 9.3%, and 12.2% with height estimation errors less than
2, 3, and 4 meters. It also outperforms Ours-CBHE by 8.0%,
7.6%, and 9.7% on height estimation with errors less than 2,
3, and 4 meters, respectively. These larger performance gaps
(compared with those reported in Fig. 12c) confirm the strong
advantage of our proposed model when both types of images
are available for building height estimation.

Note that here we only report results on the NY city block
as it has a larger number (954) of buildings, and 49.6% of the
buildings in this data set have both types of images. The two
SF city blocks only have 59 and 69 buildings, respectively.
Comparing the methods on subsets of these data sets did not
yield meaningful results.

Results on buildings with street-facing images only. To
complement the results above, we also report results for the
buildings with street-facing images only (i.e., the other 50.4%

of the buildings in the NY city block), in Fig. 14b. Now Ours-
full degenerates to Ours-CBHE, and both methods produce
the same results. Even in this case, they both outperform the
baseline by 2.7%, 3.9%, and 2.5% on height estimation with
errors less than 2, 3, and 4 meters, respectively, confirming
the effectiveness of using building corners on top of rooflines
for building height estimation.

2) Ablation Study.: To show the performance gains of
our proposed method contributed by images facing the street
and images facing the buildings, respectively, we run further
experiments on the subset of buildings from the NY city block
with both types of images (486 out of 954). We summarize
the results of our method running on both types of images
(denoted as “Ours-full”), our method running on images fac-
ing the street only (denoted as “Ours-CBHE”, Section V-A),
and our method running on images facing the building only
(denoted as “Ours-building”, Section V-B), in Fig. 14c. In
general, Ours-full achieves the best performance compared
with Ours-CBHE and Ours-building.

Ours-full outperforms Ours-CBHE by 8.0%, 7.6%, and
9.7% on height estimation with errors less than 2, 3, and 4
meters, respectively, and it outperforms Ours-building by 0.8%
and 2.1% on height estimation with errors less than 3 and
4 meters, respectively. These results confirm the importance
of using both types of images together for height estimation.
Ours-building has even the highest percentage of buildings
with a small estimation error (i.e., < 2 meters). This is because
the buildings in the NY city block are not too tall, such that
their height estimation using Ours-building is less impacted
by camera location errors (cf. Section V-C).

3) Building Height Estimation for .: The baseline method
cannot be applied to tall buildings because it takes images with
a horizontal view along the street only, so here we only show
the results from Ours-full (which, again, is the same as Ours-
CBHE since it only uses street-facing images). As shown in
Table III, 54.1% of the tall buildings have a height estimation
error of less than 5 meters, and 73.0% have an error of less
than 10 meters. The errors of tall buildings may seem larger
due to the camera projection (i.e., the errors are multiplied by
a larger multiplier for tall buildings). Since skyscrapers are
taller than 100 meters, even a 10-meter error is less than 10%.

TABLE III
EFFECTIVENESS ON TALL BUILDING HEIGHT ESTIMATION

Absolute error Percentage Relative Error Percentage

<5m 54.1% <5% 59.5%
<10m 73.0% <10% 86.5%

E. Error Analysis

We summarize the challenging cases for our model. For
buildings with a small width, roofline detection from images
facing the street is sensitive to GPS errors. Although we
calibrate the camera location, the camera location may still
contain errors, and the detected roofline may be inaccurate.
For example, in Fig. 15a, building A is quite narrow. The
computed area of the building by our algorithm is shown as
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the gray area, which is off the building and will not yield the
intended building height.

As for images facing the building with an upward-looking
view, the camera location calibration algorithm does not apply
because the building corners are close to the camera, and
their positions in the images cannot be computed precisely.
Fig. 15b shows a possible mistake of height estimation without
camera calibration from images facing the building. Building
A is close to its two neighboring buildings. When detecting
the roofline of building A, our model outputs the roofline of
building B (the red line) because the computed area of building
A (i.e., the gray area) has a larger overlap with building B,
which leads to a wrong height estimation.

(a) (b) (c) (d) (e)

Fig. 15. Example of challenging cases.

Further, for buildings with rooflines that are blocked by
other objects such as trees in both images facing the street
and those facing the building, our model may output a wrong
estimation. Take Figs. 15c and 15d as an example. Trees block
the roof of building C heavily. The actual roofline is largely
blocked and hence has a low roofline score. It is also possible
that the unblocked segment of the roofline was considered to
be outside the scope of the building (i.e., the gray region) due
to GPS errors. As shown in Fig. 15d, the red line below the true
roofline may be detected as the result, which leads to a wrong
height estimation. We have tried image in-painting [66], [67]
to recover the blocked area, but the roofline cannot be clearly
in-painted for building height estimation (cf. Fig. 15e).

F. Sensitivity Analysis

The building height estimation is highly related to the
camera location error and the corner detection error. In this
section, we analyze the building height estimation error ratio
with respect to the camera location error (in the real world)
and the corner detection error (in the Google Street Scene
images). For simplicity, we focus on the height above line lc
in Fig. 4, since the height below lc is a constant.

As shown in Fig. 4, the height estimation error is irrelevant
to the error of the camera location projected on the x′-axis and
is only related to that on the z′-axis. If the real camera location
has a distance d̂e to the location obtained from the Google
Maps API on the z′-axis, then, according to Equation 1, the
height error ratio h′

e of the ground-truth height h′
g above line

lc is computed as:

h′
e =
|h′−h′

g|
h′
g

=(|
h′
g(d̂+d̂e)

d
−h′

g|)/h′
g= |

(d̂+d̂e)

d̂
−1| (15)

where h′
r denotes the estimated height, d̂ denotes the ground-

truth distance between the camera and the building on the

(a) (b)

Fig. 16. Height estimation error with respect to camera distance and corner
position error.

z′-axis, and d̂e denotes the camera location error on the z′-
axis. We visualize the height estimation error ratio h′

e with
respect to d̂ and d̂e in Fig. 16a. For a given value of d̂, h′

e

increases linearly with d̂e. When d̂ increases given a fixed d̂e
value, h′

e decreases exponentially.
As also shown in Fig. 4, the height estimation error is

irrelevant to the corner detection error on the x-axis and is
only related to that on the y-axis. Suppose now the camera
location is accurate, while the detected corner position has an
error ce to the corner’s ground-truth position on the y-axis.
Then, according to Equation 1, the height error ratio h′

e of the
ground-truth height h′

g above line lc is:

h′
e =
|h′−h′

g|
h′
g

=(| d̂(hr+ce)

f
− hr · d̂

f
|)/h′

g= |
(hr+ce)

hr
−1| (16)

We visualize h′
e with respect to hr and ce in Fig. 16b. For

a given hr, h′
e increases linearly with ce. When hr increases

given a fixed ce value, h′
e decreases exponentially.

Although the building height estimation error increases
linearly to the camera distance error and corner position error,
large camera distance errors or large corner position errors
rarely occur in practice. Since there is no ground truth/labeled
data set for analyzing such error distributions, we take the
building height estimation error statistics on three data sets as
an indirect indicator of these errors (Appendix C).

VII. CONCLUSION

We proposed a scalable algorithm to learn building height
from street scene images. Our model consists of camera
location calibration and building roofline detection as its two
main steps. To calibrate camera location, our model performs
camera projection by matching two building corners in street
scene images with their physical locations obtained from a
2D map. To compute the building height, we first detect
roofline candidates from street scene images facing the street
(which is considered in our previous conference version [18])
and those facing the building with an upward-looking view
(which is a novel contribution of this journal extension). We
filter the roofline candidates via a proposed neural network
model named RoofNet. Among the remaining candidates, we
select the best roofline candidate via a proposed entropy-
based ranking algorithm. When the true roofline is identified,
we compute building height via the pinhole camera model.
Experimental results show that RoofNet outperforms SOTA
classifiers consistently, and our building height estimation
method outperforms the baseline by up to 11.9%.
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APPENDIX

A. Frequently Used Symbols
TABLE IV

FREQUENTLY USED SYMBOLS

Notation Description

hr the height of a building above the center line of an image
capturing the building

hb the height of a building below the center line of an image
capturing the building

cn the corner nearest to the camera
cx the corner farthest to o in the image plane
cz the corner closest to o in the image plane
d the horizontal distance from the camera to cn of a

building
d̂ the projected length of d onto the z′-axis
f the focal length of the camera
lr a building roofline

B. RoofNet Architecture
TABLE V

ROOFNET ARCHITECTURE

Layer Number Number of kernels Output size

Conv 5 × 5 32 28 × 28 24 × 24
Maxpool 2 × 2 - 24 × 24 12 × 12

Conv 5 × 5 64 12 × 12 8 × 8
Maxpool 2 × 2 - 8 × 8 4 × 4

FC - 4 × 4 1,024 × 1
Dropout - 1,024 × 1 1,024 × 1

FC - 1,024 × 1 10 × 1
L2 - 10 × 1 10 × 1

C. Building Height Estimation Error Statistics
TABLE VI

BUILDING HEIGHT ESTIMATION ERROR STATISTICS ON THREE DATA SETS

Data Set Mean Error Standard Error Median Error

NYC 2.43 0.10 1.59
SF city block 1 2.81 0.87 1.27
SF city block 2 1.85 0.27 1.24
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