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Abstract—Nowadays, a large number of sensors are equipped
on mobile or stationary platforms, which continuously generate
geo-tagged and time-stamped readings (i.e., geo-sensory data)
that contain rich information about the surrounding environ-
ment. These data have irregular space and time coordinates. To
represent geo-sensory data, there have been extensive research
efforts using time sequences, grid-like images, and graph signals.
However, there still lacks a proper representation that can
describe both the mobile and stationary geo-sensory data without
the information-losing discretization in spatial and temporal
dimensions. In this paper, we propose to represent massive geo-
sensory data as spatio-temporal point clouds (STPC), and present
STPC-Net, a novel deep neural network for processing STPC.
STPC leverages the original irregular space-time coordinates,
and STPC-Net captures intra-sensor and inter-sensor correlations
from STPC. In this way, STPC-Net learns the key information
of STPC, and overcomes challenges in data irregularity. Exper-
iments using real-world datasets show that STPC-Net achieves
state-of-the-art performance in different tasks on both mobile
and stationary geo-sensory data. The source code is available at
https://github.com/zhengchuanpan/STPC-Net.

Index Terms—Geo-sensory data, spatio-temporal point clouds,
STPC-Net, deep learning.

I. INTRODUCTION

IN modern intelligent transportation systems (ITS), a large
number of sensors are deployed to monitor their surround-

ing environment [1], [2]. These sensors are associated with
geo-spatial locations (e.g., latitude and longitude), and they
continuously generate time-stamped readings [3]. Modeling
such geo-sensory data offers a critical opportunity to measure,
infer, and understand our living environment [4].

According to the attached platform, the geo-sensory data
can be divided into mobile and stationary categories. For ex-
ample, as shown in Figure 1(a), the GPS devices equipped on
vehicles collect mobile geo-sensory data, where the locations
are changing over time. Figure 1(b), on the other hand, shows
stationary geo-sensory data collected from fixed stations (e.g.,
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Fig. 1. Illustration of geo-sensory data. Each reading is associated with the
space (e.g., latitude, longitude) and time coordinates, which may not locate in
regular grids. (a) The sensors are equipped on mobile vehicles; (b) the sensors
are deployed at stationary locations.

loop detectors), which are multiple time-series readings with
unchanged locations.

Due to the variety of applications, geo-sensory readings may
distribute at arbitrary space-time coordinates, and not locate
in rasterized uniform spatio-temporal grids (Figure 1). This
irregular distribution makes it difficult to apply representation
learning techniques such as deep learning [5] to model the
geo-sensory data. To address this issue, earlier studies consider
each individual sensor’s readings as a time sequence and apply
time series methods for sequence learning, e.g., long short-
term memory (LSTM) [6], [7]. This time series represen-
tation ignores the interaction information between different
sensors. To take advantages of the existing convolutional
neural networks (CNN) [8], some studies convert the data
into regular grid-like images [9], [10]. This transformation
introduces quantization errors that obscure the detailed spatio-
temporal information in the data. Furthermore, it is nontrivial
to apply these methods to fine-grained tasks such as trajectory
point classification [11] and sensor readings prediction [12]
as different sensors may locate in the same grid. Recent
studies [13], [14] treat geo-sensory data as graph signals
on a fixed sensor graph and apply graph neural networks
(GNN) [15] for learning. However, such approaches can only
be applied on stationary geo-sensory data (Figure 1(b)) as the
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sensors need to be fixed for constructing a sensor graph. In
addition, how to pre-define an effective sensor graph remains
a challenge as the weights between sensors are probably
unseen [16]. In general, there lacks a representation that can
describe both mobile and stationary geo-sensory data without
the information-losing discretization in spatial and temporal
dimensions.

We observe the following essential characteristics of geo-
sensory data. 1) Point data. Sensors have small sizes such
that their readings are often modeled as points. 2) Irregu-
larity. The sensor readings may distribute at arbitrary space-
time coordinates, and not locate in rasterized uniform spatio-
temporal grids. 3) Interdependency. The sensor readings are
spatially and temporally correlated to each other. 4) Sparse-
ness. The distribution of the sensors is usually sparse due to
limitations such as cost. According to these observations, a
geo-sensory reading can be viewed as an informative point
in space-time coordinates, and massive geo-sensory data can
be represented as a spatio-temporal point cloud (STPC) with
complex correlations in it. Under this definition, both mobile
and stationary geo-sensory data (Figure 1) can be represented
as STPC, which leverages the irregular space-time coordinates.

The motivation of this work is to learn massive geo-sensory
data as a unified STPC representation. Recently, numerous
deep learning methods have been successfully applied on
3D point clouds to solve various 3D vision problems [17],
[18]. These methods are effective in extracting 3D geometric
information from a single 3D point could [19], [20]. Some
studies attempt to learn spatio-temporal features from 3D point
cloud sequences [21], [22]. However, they are not suitable for
processing the STPC due to the following reasons. First, the
STPC is a set of points with both space and time coordinates,
but it cannot be represented as a point cloud sequence because
every point could be with totally different timestamps. Second,
the STPC is generated by multiple sensors, and it inherently
has complex intra-sensor and inter-sensor correlations, which
are not existed in 3D point clouds.

We thus propose STPC-Net, a new deep neural network
for processing the STPC. The key components of STPC-
Net include convolution and combination modules. The con-
volution module contains a conv-intra operation to extract
sequential features at each sensor (intra-sensor correlations),
a conv-inter operation to learn interactional features between
different sensors (inter-sensor correlations), and a gated fusion
mechanism to adaptively fuse these two features. In the
combination module, we aggregate all point features into a
global representation that has a global view of the entire
point cloud, and then concatenate local and global features to
obtain combined point features. At last, we apply a multi-layer
perceptron network upon the combined features to produce
the final output. We conduct experiments on both mobile and
stationary geo-sensory data and demonstrate our STPC-Net
achieves state-of-the-art performance.

The main contributions of this work are summarized as
follows:
• To the best of our knowledge, we are the first to pro-

pose a unified representation (i.e., spatio-temporal point
clouds) that can describe both mobile and stationary geo-

sensory data without the information-losing discretization
in spatial and temporal dimensions.

• We design a novel deep network architecture (i.e., STPC-
Net) suitable for processing spatio-temporal point clouds.
STPC-Net is able to learn both local intra-sensor, inter-
sensor correlations and global information in massive
geo-sensory data.

• Extensive experiments are carried out on both mobile and
stationary geo-sensory data, which demonstrate STPC-
Net achieves state-of-the-art performance.

The rest of this paper is organized as follows. Section II
reviews the deep learning studies on geo-sensory data and 3D
point clouds. Section III presents some preliminaries of this
study. Section IV details the method of STPC-Net. Section V
compares STPC-Net with state-of-the-art methods on both
mobile and stationary geo-sensory data. Section VI provides
the discussions of STPC versus 3D point clouds and STPC-
Net versus PointNet [19]. Finally, Section VII concludes this
paper and draws future work.

II. RELATED WORK

A. Deep Learning on Geo-sensory Data

Recent years have witnessed the rapid growth of geo-
sensory applications, along with a large number of sensors
being equipped on different platforms to monitor their sur-
rounding environment [23]. The distribution of these geo-
sensory data is not in a regular format. Researchers have
conducted various data representations to process the data.
Some of these studies consider each sensor’s readings as
a time series for sequence modeling using recurrent neural
networks (RNN) [24]–[26], etc. Such representations ignore
the interaction information between different sensors.

To take advantages of existing CNN architectures, other
studies convert the geo-sensory data into 2D images [9], [10],
[27]. They partition the investigated area into regular grids, and
map the sensor readings to the corresponding grids according
to the latitude and longitude. Then, a well-engineered CNN
(e.g., ResNet [28]) is applied to the images for features
learning. This transformation may introduce quantization error
and lose detailed spatio-temporal information in the data. In
addition, these approaches can not be applied to some fine-
grained tasks such as sensor readings prediction, as a grid
may contain multiple sensors.

Recent studies learn geo-sensory data as graph signals on
a fixed sensor graph [13], [29], [30]. Each static sensor is
considered as a node and multiple sensors form a sensor
graph. Then, graph neural networks [15] are applied for spatio-
temporal graph modeling. This transformation requires a well-
defined sensor graph. Thus, it can only be applied to process
stationary geo-sensory data, as the sensors need to be fixed
for constructing the sensor graph.

In general, there still lacks a unified representation that can
describe both mobile and stationary geo-sensory data without
the information-losing discretization in spatial and temporal
dimensions. In this paper, we firstly represent these data as
unified spatio-temporal point clouds (STPC).
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Fig. 2. STPC-Net architecture. STPC-Net of point classification contains several multi-layer perceptron (MLP) networks for features projection, two convolution
modules for local features learning on the input points, and a combination module for local and global information aggregation. STPC-Net of readings prediction
has a similar architecture, while the second convolution module is used to generate features for new points. At the last stage, both nets use an MLP network
to produce the final output.

B. Deep Learning on 3D Point Clouds

A 3D point cloud is a set of points defined in 3D metric
space, and it is one of the most significant data format
for 3D representation [18]. Recently, deep learning on 3D
point clouds is thriving [17]. Among this, PointNet [19] is
a pioneering and successful method of dealing with 3D point
clouds. It learns features independently for each point, which
means it does not model local dependencies among points.
The subsequent studies [20], [31], [32] further capture local
structural information from the neighborhoods of each point.
These methods achieve state-of-the-art performance in many
3D vision tasks such as classification and segmentation. These
methods mainly focus on learning features in geometric space.

A handful of studies have started to learn spatio-temporal
information from 3D point cloud sequences. Researchers
in [33] represent the 3D point cloud sequence as a set of
time-varying plane curves, and apply CNNs for classification.
In [34], the 3D point cloud sequences are voxelized into 4D
occupancy grids, and then the sparse 4D convolution is used.
Recently, several works attempt to extract dynamic features
directly from point cloud sequences. FlowNet3D [21] learns
features from two consecutive frames. MeteorNet [22] is able
to handle multiple frames of point cloud sequences. Some
studies [35], [36] apply recurrent models to aggregate features
from different frames.

However, the models designed for 3D point cloud sequences
are not suitable for processing the STPC. First, the STPC
cannot be represented as a point cloud sequence, as every point
could be with totally different timestamps. Second, the STPC
contains complex intra-sensor and inter-sensor correlations,
which are not existed in 3D point clouds. Thus, in this paper,
we design a new deep neural network (i.e., STPC-Net) suitable
for processing the STPC.

III. PRELIMINARY

A. Notations

A spatio-temporal point cloud is a set of N points X =
{Pi ∈ R4+d|i = 1, 2, ..., N}, where each point Pi =
(si, Ci, Xi). Herein, si denotes the corresponding sensor id;
Ci = (lati, lngi, ti) is the space-time coordinate of point Pi,
i.e., latitude, longitude, and timestamp; Xi ∈ Rd represents
a d-dimensional feature vector of point Pi, consisting of the
sensor readings and other associated features if available, such
as the time feature.

B. Problem Statement

We study two problems on spatio-temporal point clouds.
1) Point Classification: Given N input points X ∈

RN×(4+d), this problem aims to output N × K scores that
represent the probability of each point belonging to each of
K pre-defined point classes, represented as Ŷ ∈ RN×K .

2) Readings Prediction: Given M sensors and their read-
ings in Q consecutive timestamps (i.e., given N = MQ
input points X ∈ RN×(4+d)), this problem aims to predict
a series of readings of the M sensors in the next Q′ con-
secutive timestamps, i.e., to generate N ′ = MQ′ new points
Ŷ ∈ RN ′×d′

, where the sensor ids and space-time coordinates
are pre-known, d′ represents the number of kinds of readings
to be predicted.

IV. STPC-NET

A. Network Architecture

Figure 2 depicts the network architectures of STPC-Net
for point classification and readings prediction. The input of
STPC-Net is a spatio-temporal point cloud. First, a point-
wise multi-layer perceptron (MLP) network projects the input
features into D1 dimensions. The sensor ids and space-time
coordinates are concatenated back to the projected features for
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(a) Standard 2D convolution operation. For each centroid pixel (e.g.,
the red one), the number of neighborhoods is same. In each local region
(e.g., 3× 3), the neighborhoods are ordered and the relative positions
are fixed. The feature of the centroid pixel is updated as the average
sum of neighborhoods’ features.
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(b) Conv-intra operation. For each centroid point (e.g., Pi), the neigh-
borhoods of each point are defined as the points generated by the
same sensor at earlier adjacent timestamps. In different local region,
the number of neighborhoods is different, the order and the relative
positions can be diverse. The feature of the centroid point is calculated
as a weighted sum of neighborhoods’ features. The points in different
colors are generated by different sensors.
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(c) Conv-inter operation. The neighborhoods of each centroid point
(e.g., Pi) are searched as points generated by nearby sensors at recent
timestamps. Different point has different number of neighborhoods,
which are unordered and with different relative positions within the lo-
cal region. The features of neighboring points are weighted aggregated
into the centroid point. The points in different colors represent readings
generated by different sensors.

Fig. 3. The comparison of stand 2D convolution with conv-intra and conv-
inter operations. In the illustration of each operation, the figure on the left side
illustrate the neighborhoods searching approach, and the right figure show the
features aggregation method.

further processing. Then, a convolution module is proposed to
model both intra-sensor and inter-sensor correlations on the in-
put points, which will be detailed in Section IV-B. The residual
connections [28] are applied. The sensor ids and space-time
coordinates of the input points are also carried forward into
the output features. Next, we use another MLP network to
lift the features into higher dimensional (D2 > D1) and more
abstract representations. In the second convolution module,
there are some differences between point classification and
readings prediction tasks.

Algorithm 1 Conv-intra Operation
Input: X , Pi = (si, Ci), ε
Output: Xi

1: Search the intra-sensor neighboring points of point Pi in
X as Nintra(Pi) using Equation 1

2: for each Pj ∈ Nintra(Pi) do
3: Cj ←MLPintra,1(Cj − Ci)
4: Xj ←MLPintra,2([Cj , Xj ])
5: αi,j ←MLPintra,3(ti − tj)
6: end for
7: Xi ←

∑
Pj∈Nintra(Pi)

αi,j ·Xj

8: return Xi

Algorithm 2 Conv-inter Operation
Input: X , Pi = (si, Ci), θ, ρ, dis(·, ·)
Output: Xi

1: Search the inter-sensor neighboring points of point Pi in
X as Ninter(Pi) using Equation 4

2: for each Pk ∈ Ninter(Pi) do
3: Ck ←MLPinter,1(Ck − Ci)
4: Xk ←MLPinter,2([Ck, Xk])
5: βi,k ←MLPinter,3(dis(Pi, Pk))
6: end for
7: Xi ←

∑
Pk∈Ninter(Pi)

βi,k ·Xk

8: return Xi

In STPC-Net of point classification, the second convolution
module is same as the first one to abstract higher level
local features on the input points. After that, the combination
module aggregates the local and global features, which will
be detailed in Section IV-C. Finally, an MLP network outputs
K scores for each of the N input points.

In STPC-Net of readings prediction, the second convolution
module is used to generate features for new points. The
residual connections are not applied, as the input and output
represent different points. In the combination module, the local
and global features of the new points are combined. At last, we
apply an MLP network upon the combined features to produce
the d′-dimensional prediction result for each of the N ′ new
points.

B. Convolution Module

A spatio-temporal point cloud (STPC) contains points gen-
erated by multiple sensors in a period of time, which may
have complex intra-sensor and inter-sensor correlations. We
design a convolution module to capture such correlations,
which consists of a conv-intra operation abstracts the sequence
features at each sensor, a conv-inter operation learns the
interaction information between different sensors, and a gated
fusion mechanism adaptively fuses them.

We denote the input of the convolution module as X . As
described in Section IV-A, STPC-Net includes two types of
convolution module, one for leaning features on the input
points and the other to generate features for new points. In both
types, the sensor ids and space-time coordinates of the target
output points are pre-known, represented as {Pi = (si, Ci)},
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where Ci = (lati, lngi, ti). The computations of these two
types are similar. The only difference is that whether the output
represents the same points as the input or not.

In the following discussion, we first briefly review the
standard 2D convolution operation in section IV-B1, and
then detail the conv-intra and conv-inter operations in sec-
tions IV-B2 and IV-B3, respectively. At last, section IV-B4
introduces the gated fusion mechanism.

1) Standard 2D Convolution Operation: As shown in Fig-
ure 3(a), each pixel has the same number of neighborhoods,
which are spatial ordered (e.g., from left to right and top
to bottom). Within each local region, the relative positions
between different pixels are always fixed. Thus, the features
of neighborhoods could be projected by a fixed size of
convolution kernel (e.g., 3× 3), and then aggregated into the
centroid pixel via average summation.

2) Conv-intra Operation: A sensor generates successive
readings in a period of time, where each reading may be
affected by its previous readings. We propose a conv-intra
operation to model such intra-sensor correlations, as illustrated
in Figure 3(b) and Algorithm 1.

Similar to the standard 2D convolution operation, the conv-
intra operation abstracts features in the local region. For each
target output point Pi, we examine its neighboring points are
generated by the same sensor at earlier adjacent timestamps:

Nintra(Pi) = {Pj |si = sj , 0 ≤ ti − tj ≤ ε, Pj ∈ X}, (1)

where ε is the threshold to control the size of the local region.
As the points in a STPC are not located in regular grids but
can take arbitrary values, the neighboring points in Nintra(Pi)
are unordered, with diverse relative positions and variable sizes
at different centroid point Pi. Thus, the standard discretized
convolution kernels on raster images cannot be applied on the
STPC to project neighborhoods’ features.

We introduce the features projection approach as follows.
First, in a local region Nintra(Pi), the relative position
of a neighboring point Pj to the centroid point Pi is a
discriminative feature. Thus, we position local coordinate
system at the centroid point Pi. For each neighboring point
Pj ∈ Nintra(Pi), we take its local coordinate (Cj −Ci) , and
project it into a higher dimensional representation using an
MLP network (line 3 in Algorithm 1). Then, we concatenate
this local coordinate representation with the associated feature,
and apply another MLP network to output the projected feature
of point Pj (line 4 in Algorithm 1).

In the features aggregation stage, all neighboring points’
features are aggregated into the target output point Pi. As
the time differences vary across neighboring points, they
contribute differently to the target point. Thus, different to the
standard 2D convolution using average aggregation, we design
a weighted approach, where the weight between two points is
defined as a function of the time difference:

αi,j = f(ti − tj), (2)

where f could be learned using an MLP network (line 5 in
Algorithm 1). The weights are then normalized into [0, 1] at
each output point Pi. Based on the weights, the output feature

of point Pi is computed as a weighted sum of its neighboring
points’ features (line 7 in Algorithm 1):

Xi =
∑

Pj∈Nintra(Pi)
αi,j ·Xj , (3)

where Xj is the projected feature of the neighboring point Pj

(lines 3-4 in Algorithm 1). The learnable parameters of the
MLP networks in the conv-intra operation are shared across
all the points to solve the unordered problem.

3) Conv-inter Operation: A sensory reading may also be
affected by nearby sensors’ readings in recent time period. As
shown in Figure 3(c), we propose a conv-inter operation to
model such inter-sensor correlations.

As detailed in Algorithm 2, the computation of the conv-
inter operation is similar to that of conv-intra. Now, the
neighboring points of point Pi are defined as those from
nearby sensors at recent timestamps:

Ninter(Pi) = {Pk|si 6= sk, |ti − tk| ≤ θ,
dis(Pi, Pk) ≤ ρ, Pk ∈ X}, (4)

where θ and ρ are thresholds of time difference and distance,
dis(Pi, Pk) denotes the geographical distance (e.g., Euclidean)
between points Pi and Pk. Then, the features of neighboring
points are projected in the same manner as in the conv-intra
operation (lines 3-4 in Algorithm 2). In the weighted aggre-
gation approach, the weight is conditioned on the distance
between two points:

βi,k = h(dis(Pi, Pk)), (5)

where h is learned using an MLP network (line 5 in Algo-
rithm 2). Finally, the output feature of point Pi is aggregated
as (line 7 in Algorithm 2):

Xi =
∑

Pk∈Ninter(Pi)
βi,k ·Xk, (6)

where Xk is the projected feature of the neighboring point
Pk (lines 3-4 in Algorithm 2). The parameters of the MLP
networks in the conv-inter operation are shared across all the
points.

4) Gated Fusion: We denote the outputs of the conv-
intra and conv-inter operations as Xintra and Xinter, which
contain intra-sensor and inter-sensor information respectively.
To fuse them in a data-dependent way, we apply a gated fusion
mechanism [30]:

X = z �Xintra + (1− z)�Xinter, (7)

where � denotes the element-wise product operation. The gate
z is computed as:

z = σ(MLPg,1(Xintra) +MLPg,2(Xinter)), (8)

where MLPg,1 and MLPg,2 represent two different MLP
networks, σ(·) is the sigmoid activation to normalize the output
into [0, 1]. This gated fusion mechanism could adaptively
control the importance of two features at point-wise and
channel-wise level, according to the input data.
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C. Combination Module

As the convolution modules only extract features in the local
region, it is essential to inject the global information into the
learning process. To this end, we add a combination module
upon the output of the second convolution module, before it
is fed into the last MLP network to produce the final output,
as shown in Figure 2.

Inspired by PointNet [19], we apply an average pooling
layer to aggregate all point features into a discriminative global
signature, which has a global view of the entire point cloud.
Such a global feature enables the network to take into account
readings over a long time period and at distant sensors, which
is beneficial to model the long-term patterns and the long-
range dependencies. We then concatenate the global feature
with each local point feature to obtain combined point features,
which encode both local and global information. At the last
stage, we use an MLP network upon the combined features to
produce the final output.

V. EXPERIMENTS

We evaluate our method using both mobile and stationary
geo-sensory data on two different types of tasks, i.e., point
classification and readings prediction.

A. Point Classification

STPC-Net of point classification is evaluated on the GeoLife
dataset [11] for transportation mode identification. This dataset
contains GPS trajectories of 69 users with labeled transporta-
tion modes (e.g., walk, bike). Each GPS point is associated
with the user (sensor) id, latitude, longitude, timestamp, etc.
The problem is to identify the transportation mode of each
GPS point given the sensor ids and space-time coordinates,
which is a point classification problem.

As the sensors are carried by users (not stationary), these
data are actually mobile geo-sensory data (Figure 1(a)). Pre-
vious studies on such data for transportation mode iden-
tification generally follow a two-step approach. They first
detect the point where the transportation mode changes, and
divide the trajectory into segments accordingly, expecting that
each segment contains only one transportation mode. Then, a
classification model is applied to classify each segment. In this
setting, the geo-sensory data are considered as a set of isolated
time sequences, and the correlations between different users
are ignored.

We learn these mobile geo-sensory data as spatio-temporal
point clouds. Our STPC-Net could capture both intra-sensor
and inter-sensor correlations, and predict the transportation
mode of each point end-to-end.

1) Data Preprocessing: We adopt the same data prepro-
cessing procedures as in [37] and obtain 4.7 million valid
points in total. These points are divided into 9,362 samples,
where each sample contains 512 points (i.e., N = 512). We
randomly select 70% of the samples for training, 10% for
validation, and the rest 20% for testing.

Following [37], each point is associated with a 6-
dimensional feature vector (d = 6), which are the motion
features including the distance and time interval between two

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE GEOLIFE

DATASET FOR TRANSPORTATION MODE IDENTIFICATION.

Method Accuracy Precision Recall F1-score

Zheng et al. [11] 76.2% 76.9% 76.4% 74.8%
Endo et al. [39] 67.9% - - -
Wang et al. [41] 74.1% - - -
TrajectoryNet [42] 78.0% 78.4% 77.2% 77.5%
SECA [37] 76.8% 79.8% 75.8% 77.0%

STPC-Net 82.9% 83.8% 82.2% 82.9%

consecutive points, the speed, acceleration, jerk, and heading
change rate of each point. Five transportation modes (i.e.,
K = 5) that constitute the majority of the dataset are
considered, i.e., walk, bike, bus, drive, and train. More detailed
information about the data preprocessing procedure could refer
to [37].

2) Experimental Settings: As described above, the number
of input points is N = 512, each with 4 + d (d = 6) dimen-
sions, and STPC-Net outputs K = 5 scores for each point.
In the conv-intra operation, the threshold of time difference
is set as ε = 20 minutes. In the conv-inter operation, the
distance between two points is the Euclidean distance (dis(·, ·)
in Algorithm 2). The thresholds of time difference and distance
are set as θ = 20 minutes and ρ = 1 kilometers, respectively.
We will investigate the influence of these hyperparameters
in section V-A6. The output dimensions of two convolution
modules are D1 = 64 and D2 = 128, respectively.

The objective function is the cross entropy loss, which is
optimized using the Adam optimizer [38] with a initial learn-
ing rate of 0.001. The evaluation metrics include accuracy,
average precision, average recall, and average F1-score.

3) Baseline Methods: We compare STPC-Net with the
following baseline methods.

• Zheng et al. [11] that abstracts a set of hand-crafted
features and applies Decision Tree for classification.

• Endo et al. [39] that uses Stacked Denoising Auto-
encoders (SDA) [40] to extract deep features from GPS
trajectories and applies logistic regression (LR) for clas-
sification.

• Wang et al. [41] that uses a sparse auto-encoder to extract
deep features from hand-crafted features and applies deep
fully-connected neural networks for classification.

• TrajectoryNet [42] is a bi-directional gated recurrent unit
(GRU) network with maxout activations [43], and uses
point-and-segment-based features to detect transportation
modes.

• SECA [37] is a deep SEmi-Supervised Convolutional
Autoencoder architecture that integrates a convolutional-
deconvolutional autoencoder and a convolutional neural
network.

4) Experimental Results: Table I shows the comparison
of our method with recent studies for transportation mode
identification. STPC-Net achieves the best performance in
terms of all metrics. Our advantages are two-fold. First, STPC-
Net enables end-to-end learning while previous studies need
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Fig. 4. The impact of hyperparameters in STPC-Net. (a) Accuracy with respect to the threshold of time difference in conv-intra operation. (b) Accuracy with
respect to the threshold of time difference in conv-inter operation. (c) Accuracy with respect to the threshold of distance in conv-inter operation.

TABLE II
ABLATION STUDIES ON THE GEOLIFE DATASET.

Method Accuracy Precision Recall F1-score

STPC-Net w/o conv-intra 76.3% 77.2% 75.2% 76.0%
STPC-Net w/o conv-inter 80.3% 81.8% 78.7% 79.7%
STPC-Net w/o wa 81.4% 81.8% 80.9% 81.3%
STPC-Net w/o gf 81.6% 82.8% 80.7% 81.5%
STPC-Net w/o combination 79.7% 80.9% 78.6% 79.5%

STPC-Net 82.9% 83.8% 82.2% 82.9%

two steps, i.e., trajectory segmentation and segment classi-
fication. Second, previous studies learn the data as isolated
time sequences that ignore the interactions among users, while
STPC-Net well respects the data and captures both intra-sensor
and inter-sensor correlations.

There is another method [44] that has a slightly higher
accuracy (84.8%) than ours (82.9%), but it assumes perfect
trajectory segmentation. This method also follows the two-
step approach, while it uses true change points to segment
trajectories. In real applications, the change points are unseen
and the trajectories may not be segmented precisely. Thus,
the performance of [44] may be of less practical value. Our
STPC-Net only requires sensor ids and space-time coordinates
(always available), and could achieve state-of-the-art perfor-
mance in an end-to-end way.

5) Ablation Studies: To further investigate the effect of
each component in our model, we compare STPC-Net with
its variants as follows.
• STPC-Net w/o conv-intra: STPC-Net without the conv-

intra operations.
• STPC-Net w/o conv-inter: STPC-Net without the conv-

inter operations.
• STPC-Net w/o wa: STPC-Net without weighted aggrega-

tion approaches in conv-intra and conv-inter operations.
We aggregate neighborhoods’ features with average sum.

• STPC-Net w/o gf: STPC-Net without the gated fusion
mechanism. We replace it by directly adding the intra-
sensor and inter-sensor features.

• STPC-Net w/o combination: STPC-Net without the
combination module.

Table II shows the results of each model. STPC-Net per-
forms better than STPC-Net w/o conv-intra and STPC-Net
w/o conv-inter, which demonstrate the effectiveness of intra-

sensor and inter-sensor correlations. Especially, the introduc-
tion of the conv-intra operation significantly improves the
results, indicating that the temporal patterns at each sensor
are essential in the geo-sensory data. By further modeling
the inter-sensor correlations, STPC-Net consistently improves
the performance, showing the importance of the interaction
information.

By removing the weighted aggregation approach, the perfor-
mance of STPC-Net w/o wa degrades obviously, pointing out
that the weighted aggregation is a key factor to the success of
the conv-intra and conv-inter operations. It helps the network
to focus on the most correlated neighboring points to update
the point features.

STPC-Net performs better than STPC-Net w/o gf, showing
the effectiveness of the gated fusion mechanism that adaptively
fuses two features in a data-dependent way.

STPC-Net outperforms STPC-Net w/o combination by a
large margin, which indicates that the global information of
the entire point cloud (e.g., the long-term pattern and long-
range dependencies) is of great importance for learning point
features.

6) Impact of Hyperparameters: We further analyze the im-
pact of hyperparameters in STPC-Net, including the threshold
of time difference in conv-intra operation ε, the threshold of
time difference in conv-inter operation θ, and the threshold of
distance in conv-inter operation ρ.

As shown in Figure 4(a), as ε is larger, the accuracy of
STPC-Net first increases and then decreases, demonstrating
that more temporal information could yields better perfor-
mance. However, when the length of time window is very
long, it would introduce unrelated or useless information, and
the learning becomes more difficult, which hinders the perfor-
mance. Similar results could be observed from Figures 4(b)
and 4(c).

B. Readings Prediction

We evaluate STPC-Net of readings prediction on the
PeMSD8 dataset [45] for traffic flow prediction. This dataset
contains three kinds of traffic condition readings (traffic flow,
speed, and occupancy) of 170 sensors in California. These
sensors are fixed, and thus generate stationary geo-sensory
data (Figure 1(b)). The readings are pre-aggregated into every
5-minute interval. The problem is to predict the traffic flow
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readings at all sensors in the next 12 time steps (1 hour) given
all the three traffic condition readings of previous 12 time
steps [45].

Earlier works for sensor readings prediction consider each
sensor’s readings as a time sequence and apply time series
methods for prediction. These methods ignore the correlations
between different sensors. Recent studies formulate readings
prediction as a graph modeling problem. They construct a
fixed sensor graph according to the locations of sensors and
transform the sensory data into graph signals on that graph.
By utilizing graph neural networks [15], these methods have
achieved significant progress in the literature.

We learn such stationary geo-sensory data using a new
data representation, i.e., spatio-temporal point clouds. In this
setting, the input is N = 170 × 12 = 2040 points, and the
network needs to generate N ′ = 2040 new points, where the
sensor ids and space-time coordinates are pre-known.

1) Data Preprocessing: Each point is associated with the
sensor id, space-time coordinate, and a 3-dimensional (d = 3)
feature vector consisting of the traffic flow, speed, and occu-
pancy. These features are normalized via the Z-Score method.
Following [46], [47], the data is split in chronological order
with 60% for training, 20% for validation, and 20% for testing.

2) Experimental Settings: As described above, the input
contains N = 2040 points, each with 4+d (d = 3) dimensions,
and STPC-Net needs to output N ′ = 2040 new points, each
with the predicted traffic flow value (d′ = 1). In the first
convolution module for features learning on input points, the
threshold of time difference is set as ε1 = 30 minutes (six time
steps) in the conv-intra operation. In the conv-inter operation,
as the locations of sensors are fixed, we could pre-calculate
the pair-wise road network distance between any two sensors.
Thus, the computation of distance (dis(·, ·) in Algorithm 2)
could be realized as a look-up table operation. With these
non-Euclidean distances, we could inject the road network
information into the learning process. The thresholds of time
difference and distance in the conv-inter operation are set
as θ1 = 5 minutes (one time step) and ρ1 = 1000 miles,
respectively. In the second convolution module for new points
generation, the threshold of time difference is set as ε2 = 120
minutes in the conv-intra operation. In the conv-inter opera-
tion, the thresholds of time difference and distance are θ2 = 90
minutes and ρ2 = 1000 miles, respectively. We will discuss the
impact of these hyperparameters in section V-B6. The output
dimensions of two convolution modules are D1 = 64 and
D2 = 128, respectively.

The loss function is the mean absolute error (MAE), which
is optimized using the Adam optimizer [38] with a initial learn-
ing rate of 0.001. The evaluation metrics include root mean
squared error (RMSE), MAE, and mean absolute percentage
error (MAPE).

3) Baseline Methods: We compare STPC-Net with the
following baseline methods.

• SVR [48]: Support Vector Regression that uses a linear
support vector machine for regression tasks.

• LSTM [6]: Long Short-Term Memory is special kind of
recurrent neural networks (RNN).

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE PEMSD8

DATASET FOR TRAFFIC FLOW PREDICTION.

Method RMSE MAE MAPE (%)

SVR [48] 36.16±0.02 23.25±0.01 14.64±0.11
LSTM [6] 34.06±0.32 22.20±0.18 14.20±0.59
STGCN [14] 27.83±0.20 18.02±0.14 11.40±0.10
DCRNN [13] 27.83±0.05 17.86±0.03 11.45±0.03
Graph WaveNet [29] 31.05±0.07 19.13±0.08 12.68±0.57
STG2Seq [49] 30.71±0.61 20.17±0.49 17.32±1.14
ASTGCN [45] 28.16±0.48 18.61±0.40 13.08±1.00
STSGCN [46] 26.80±0.18 17.13±0.09 10.96±0.07
APTN [47] 24.76±0.11 15.63±0.08 9.91±0.06

STPC-Net 24.82±0.10 15.26±0.14 9.77±0.14

TABLE IV
ABLATION STUDIES ON THE PEMSD8 DATASET.

Method RMSE MAE MAPE (%)

STPC-Net w/o conv-intra 26.29±0.29 16.64±0.07 10.92±0.05
STPC-Net w/o conv-inter 25.22±0.13 15.47±0.09 10.00±0.10
STPC-Net w/o wa 25.10±0.15 15.53±0.15 10.04±0.12
STPC-Net w/o gf 24.98±0.11 15.46±0.08 9.94±0.12
STPC-Net w/o combination 25.81±0.23 16.11±0.12 10.44±0.15

STPC-Net 24.82±0.10 15.26±0.14 9.77±0.14

• STGCN [14]: Spatio-Temporal Graph Convolution Net-
work that combines graph convolutional layers and con-
volutional sequence learning layers to capture spatial and
temporal dependencies.

• DCRNN [13]: Diffusion Convolutional Recurrent Neu-
ral Network that integrates diffusion convolution with
sequence-to-sequence architecture to encode spatial and
temporal information.

• Graph WaveNet [29] that combines graph convolution
with dilated casual convolution to capture spatio-temporal
dependencies.

• STG2Seq [49]: Spatio-Temporal Graph to Sequence
Model that uses multiple gated graph convolutional mod-
ule and seq2seq architecture with attention mechanisms
to make multi-step prediction.

• ASTGCN [45]: Attention Based Spatio-Temporal Graph
Convolutional Networks that designs spatial attention
and temporal attention mechanisms to model spatial and
temporal dynamics, respectively.

• STSGCN [46]: Spatio-Temporal Synchronous Graph
Convolutional Networks that synchronously captures the
complex spatio-temporal correlations and takes the het-
erogeneity into account.

• APTN [47]: Attention-based Periodic-Temporal neural
Network that incorporates attention mechanisms and
LSTM into an encoder-decoder framework.

4) Experimental Results: Table III presents the perfor-
mance of STPC-Net as compared to baseline methods. The
results of baseline methods except for APTN are provided
by [46], where STSGCN is compared to others. For APTN,
we use the default settings in its original proposal [47]. We
repeat the experiment 10 times and report the average of
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Fig. 5. The impact of hyperparameters in STPC-Net. (a) MAE with respect to the threshold of time difference in conv-intra operation in the first convolution
module. (b) MAE with respect to the threshold of time difference in conv-inter operation in the first convolution module. (c) MAE with respect to the threshold
of distance in conv-inter operation in the first convolution module. (d) MAE with respect to the threshold of time difference in conv-intra operation in the
second convolution module. (e) MAE with respect to the threshold of time difference in conv-inter operation in the second convolution module. (f) MAE with
respect to the threshold of distance in conv-inter operation in the second convolution module.

MAE, RMSE, MAPE with a standard deviation in Table III.
We observe that even though we are working on a new data
representation (i.e., spatio-temporal point clouds), we are able
to achieve on-par performance with state-of-the-art.

Among the baseline methods, SVR and LSTM are time
series methods and achieve poor performance because they
ignore the interactions among sensors. Other baseline methods
transform the data into graph signals and specially design
suitable models for spatio-temporal graph modeling. Com-
pared to the time series algorithms, these graph-based methods
further capture the dependencies between different sensors via
well-designed graph neural networks. Although these methods
achieve promising performance, they can only be applied on
stationary geo-sensory data as they need the sensors to be
stationary to pre-define the sensor graph. In other words, these
graph-based models cannot deal with the mobile geo-sensory
data, e.g., transportation mode identification on the GeoLife
dataset in Section V-A. Our STPC-Net learns both mobile
and stationary geo-sensory data as a unified spatio-temporal
point clouds representation, and could achieve state-of-the-art
performance on different types of tasks.

5) Ablation Studies: To further study the effect of each
component in our model, we compare STPC-Net with its five
variants, which are defined in section V-A5. As shown in
Table IV, STPC-Net performs much better than STPC-Net
w/o conv-intra and STPC-Net w/o conv-inter, demonstrating
the effectiveness of the conv-intra and conv-inter operations.
In addition, the weighted aggregation approach improves the
performance (STPC-Net v.s. STPC-Net w/o wa) as it enables
the model to select the useful information at each convolution
operation. The effect of gated fusion is evident as well

(STPC-Net v.s. STPC-Net w/o gf), showing that the gated
fusion mechanism is helpful to flexibly control the importance
of intra-sensor and inter-sensor features. By aggregating the
global feature, STPC-Net significantly improves the perfor-
mance as compared to STPC-Net w/o combination, which
validates the importance of the global information.

6) Impact of Hyperparameters: We present the impact of
hyperparameters in Figure 5. Unlike STPC-Net of point clas-
sification, where two convolution modules are both used for
abstracting features from input points (Figure 2) and adopt the
same hyperparameters, in STPC-Net of readings prediction,
the second convolution module is used for generating new
points from the input points, which is different from the first
one. Thus, here we apply different hyperparameters in two
convolution modules.

As shown in Figure 5, in general, as the size of neighbor-
hood becomes larger (ε, θ, or ρ increases), the model could
achieve better performance because more spatio-temporal in-
formation is considered. However, when the size of neighbor-
hood is very large, it would introduce useless or unrelated
information into the learning process and thus degrades the
performance.

VI. DISCUSSION

In this paper, we extend the representation of point clouds
to represent massive geo-sensory data as spatio-temporal point
clouds (STPC). Inspired by PointNet [19], which is the first
neural network directly consumes 3D point clouds, we further
propose a new deep network (i.e., STPC-Net) that suitable for
processing STPC. In this section, we discuss the similarities
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and differences between STPC and 3D point clouds, STPC-
Net and PointNet, respectively.

A. Spatio-Temporal Point Clouds versus 3D Point Clouds

1) Similarities: Both the STPC and 3D point clouds are
sets of points, which are not in regular formats. The points
in both point clouds are usually sparse, and the neighboring
points are correlated with each other.

2) Differences: The differences between STPC and 3D
point clouds mainly lie in two aspects. First, in a 3D point
cloud, each point is associated with space coordinates. While,
in the STPC, each point is associated with both space and
time coordinates. Several recent works [21], [22], [35], [36]
attempt to study on 3D point cloud sequences. While, they are
also different to STPC, which is not a point cloud sequence,
but a set of points with different timestamps. Second, the
points in STPC are generated by multiple sensors. It inherently
has complex intra-sensor and inter-sensor correlations in the
STPC. While, these correlations are not existed in 3D point
clouds.

B. STPC-Net versus PointNet

1) Similarities: Both the STPC-Net and PointNet extract
information from irregular point sets. Both of them apply a
pooling layer to form a global feature to model the correlations
among distant points.

2) Differences: The differences between STPC-Net and
PointNet are two-fold. The main difference lies in the fea-
tures learning process. PointNet uses multi-layer perception
(MLP) networks to learn each point’s feature independently.
By this design, PointNet does not capture local informa-
tion. The improved version, i.e., PointNet++ [20] models the
local correlations among neighboring points. It focuses on
learning features in the spatial dimension. While, the STPC
has complex intra-sensor and inter-sensor correlations in both
spatial and temporal dimensions. We carefully design the conv-
intra and conv-inter operations to model these correlations in
STPC-Net. Moreover, it applies a gated fusion mechanism
to adaptively fuse them. The other difference is due to the
learning task. STPC-Net is able to generate new points to
predict future sensor readings. While, there is no similar design
in PointNet.

VII. CONCLUSION

We proposed a unified representation to describe both
mobile and stationary geo-sensory data without information-
losing discretization in spatial and temporal dimensions, i.e.,
spatio-temporal point clouds (STPC). We further designed a
deep network (STPC-Net) suitable for processing the STPC
that collectively models the local intra-sensor and inter-sensor
correlations, as well as the global information. When evaluated
on two types of data in different tasks (i.e., point classification
on mobile geo-sensory data and readings prediction on station-
ary geo-sensory data), STPC-Net consistently achieves state-
of-the-art performance. This study extends the representation

of point clouds to a new filed, i.e., representing massive geo-
sensory data, and provides a new way to handle the irregular
geo-sensory data.

In practical, the mobile sensors could travel all over the
city to monitor the environment, while they may not monitor
a location at all times. The stationary sensors can provide
continuous measurements at specific locations, while their high
maintenance cost allows only a limited number of installations.
It is important to fuse both the mobile and stationary geo-
sensory data to provide a wide spatial range of continu-
ous measurements. The proposed unified representation (i.e.,
STPC) that can describe both mobile and stationary geo-
sensory may potentially benefit to the fusion. We plan to
investigate this in future work.
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