Web Page Template and Data Separation for Better
Maintainability

Chenxu Zhao, Rui Zhang*, and Jianzhong Qi

School of CIS, The University of Melbourne, Parkville, Australia
chenxuz @student.unimelb.edu.au
{rui.zhang, jianzhong.qi} @unimelb.edu.au

Abstract. Separating a web page into template code and data records populated
into the template is an important problem. This problem has a wide range of
applications in web page compression and information extraction. We study this
problem with the aim to separate a web page into easily maintainable template
code and data records. We show that this problem is NP-hard. We then propose a
heuristic algorithm to solve the problem. The main idea of our algorithm is to parse
a web page into a tree and then to process it recursively in a bottom-up manner
with three steps: splitting, folding, and alignment. We perform experiments on real
datasets to evaluate the performance of our proposed algorithms in maximizing
the maintainability of the template code produced. The experimental results show
that our proposed algorithms outperform the baseline algorithms by 25% in the
maintainability measure.

Keywords: Web page template extraction - Maintainability index - Dual teaching
and learning based optimization

1 Introduction

Separating a web page into template code and data records populated into the template
is an important problem. This problem has a wide range of applications in web page
compression and data record extraction. We study this problem and focus on the main-
tainability of the template code generated, since easily maintainable template code is
reliable, and it will simplify further developments on top of the template code, e.g., to
update the web templates. Figure 1 shows an example of the web page separation prob-
lem. In particular, Figure 1(a) shows the HTML source of a web page which contains
a list of items (cf. the “(/i)” tags). Figure 1(b) shows the template code separated from
the HTML source, which effectively says that the HTML page can be generated by a
for-loop (cf. the “(for1)” tag) to produce a list of “(/i)” items. The attributes and data
records to be populated into this list of items are represented by variables “r1” and “r2”,
the values of which are stored in a data record file as illustrated in Figure 1(c). Note that,
in this example HTML source code, the second list item contains an additional “(span)”
tag. This is reflected in the “(i f1)” tag in the generated template in Figure 1(b).

* Corresponding author

2 C. Zhao et al.

<div>
<forl>
)
<div> {r2}
Java <ifl>STAR</ift> oLl
PHP {rl:;java,r2:Java},
STAR </forl> {rl:php,r2:PHP,if1:{}}
</div> </div>]
(a) Web page source (b) Template code (c) Data records

Fig. 1. An example of the web page separation problem

Making such a separation has important applications. For example, we can improve the
maintainability of web page source code by writing “for-loop” to produce repeating data
records rather that writing a duplicate code segment for each data record. Besides, we
may reduce the size of the web page by storing it in its template code form, e.g., a long
list in the HTML source can be replaced by a simple “for-loop” tag in the template code.

SYNTHIA [7] is the state-of-the-art web page separation algorithm that aims at com-
pressing web pages. It processes the DOM tree of a web page hierarchically and utilizes
pairwise similarity to determine which siblings should be folded, i.e., replaced by a
for-loop in the template code. It uses a local alignment algorithm to capture the dif-
ferences between the siblings folded together, i.e., to add the “if” tags in a for-loop
in the template code. After separating a web page into its template and data records,
SYNTHIA will use the template code and data records to replace the HTML source only
if they are shorter. For example, the number of characters of the HTML source in Figure
1(a) is 90, while the total number of characters in the template code and data records in
Figures 1(b) and 1(c) is 131. Thus, SYNTHIA will keep the HTML source as it is shorter.

In comparison, our work focuses on the maintainability of the web page source. In the
example shown in Figure 1, the HTML source has a maintainability score of 110.106,
while the template code has a maintainability score of 110.132 which indicates that the
template code is easier to maintain (detailed in Section 3). Intuitively, replacing all those
list items with a for-loop makes it easier to update the web page, e.g., if we want to
change the style of each list item, we only need to change it once in the template for-loop
rather than changing every list item in the HTML source.

In this paper, we study how to separate a web page into easily maintainable template code
and data records. We evaluate the maintainability of a separation by the maintainability
index (MI) [1]. MI is an important software metric to measure the maintainability of
software source code. A higher MI score suggests a higher maintainability and is more
preferable. Intuitively, a piece of code would have a higher MI score if it is shorter,
having few variable and functions, and having few branches (detailed in Section 3). To
the best of our knowledge, we are the first to formulate a web page separation problem
based on the MI score. We analyze the complexity of our separation problem and show
that it is NP-hard. We then adapt the SYNTHIA algorithm to solve our problem. In
SYNTHIA, the tree sibling splitting procedure compares pairwise sibling similarity and
uses a splitting threshold to determine whether the siblings should be folded together or

Web Page Template and Data Separation for Better Maintainability 3

be separated into different chunks. This threshold is heuristically defined to obtain short
template code. We adapt the algorithm by replacing this threshold with ours that aims
to obtain a high MI score.

We further develop a population-based optimization algorithm, named dual teaching
and learning based optimization (dual-TLBO), to optimize sibling splitting. The algo-
rithm considers a splitting plan as an individual and evaluates the maintainability of a
population of different individuals (splitting plans) globally under the subtrees being
considered, which addresses the limitation of SYNTHIA that only considers pairwise
similarity. We also develop a global alignment algorithm with dynamic costs of align-
ment operations, which achieves a high-quality separation. In summary, we make the
following contributions:

— We define a novel web page separation problem and show that it is NP-hard.

— We propose a population-based algorithm named dual-TLBO to help select the
siblings in the web page source code tree that should be folded together with the
aim to achieve a high MI score.

— We propose a global alignment algorithm to align siblings to be folded together
with the aim to achieve a high MI score.

— We perform a experimental study to evaluate our algorithms in both maximizing
the MI score and minimizing the length of the generated template code and data
records.

2 Related Work

We review closely related work on data record extraction and optimization. MDR [5]
uses XPath to identify the text nodes. It presents an XPath matching algorithm to
detect template and text nodes with similar XPaths. The partial tree alignment algorithm
[11] aligns similar sub-DOM trees. FiVaTech [4] applies alignment algorithms and
template detection algorithms on multiple web pages. It defines a new pattern tree named
“fixed/variant pattern tree”’. These techniques aim to extract the data records only. The
web page templates are simply discarded. The original pages cannot be reconstructed
from the extraction results because of the loss of template information. TLBO [9] is a
population-based optimization algorithm that every solution learns from the current best
solution and representative solutions towards achieving the best solution. The number of
nodes of a DOM tree may change when deduplicating repetitive sub-DOM trees. Pang
et al. [8] present an algorithm for constructing a minimal dominating set on digraphs
when the number of nodes is changing.

3 Maintainability Index of Template

The maintainability index (MI)[1] is a software metric to evaluate the maintainabil-
ity of programs. We use it to evaluate the quality of a separation. MI is formed
by three important software metrics: Halstead Volume (V), Cyclomatic Complex-
ity [6] (G), and Source Lines of Code (SLOC). The function of MI is given as

4 C. Zhao et al.

MI =171 =52 x (V) - 0.23 x (G) — 16.2 x [n(SLOC).

We evaluate our work using the MI score and aim to separate the web page into data
records and template code that has a high MI score (i.e., better maintainability). We
adapt the model given in SYNTHIA [7]. To compute the maintainability index score for
a separation, we define the maintainability index of layout trees as summarized in Table
1. Every text node adds one operand and one SLOC. The text node is identified by its
value. An element node adds one operator and its starting tag and an ending tag adds
one SLOC, respectively. They are identified by its tag string. A condition/iteration node
adds one operator, one Cyclomatic Complexity, and two SLOCs. A reference node adds

one operand. It further adds one SLOC when it refers text nodes.
Table 1. MI of Layout Trees

H Node Type [Operand Operator G SLOCH
Text Node 1 0 0 1
Element Node 0 1 0 2
For/If Node 0 1 1 2
Reference Node (attrs) 1 0 0 0
Reference Node (others) 1 0 0 1

4 Problem Definition and Complexity Analysis

4.1 Problem Definition

We parse the web pages into a DOM tree. There exist many possible separations of
a given DOM tree as formed by different folding combinations of the siblings in the
DOM tree. We define a new concept called the variation to represent a specific folding
combination. A variation of a given DOM tree is defined as a set S of subsets of siblings
of the DOM tree that satisfies the following three conditions:

1. The intersection of any two elements of S (i.e., subsets of siblings) is empty.

2. The union of all elements of S contains all nodes of the DOM tree.

3. The siblings of an element of S are continuous, i.e., they are all adjacent to each
other in the DOM tree.

The maintainability index of a variation of a given DOM tree is the maintainability index
of the layout tree that is generated by the variation. We aim to find a variation that has
the maximum maintainability index. A formal definition of our problem is as follows.

Definition 1. Maintainability based web page separation (optimization version) Given
a DOM tree T and the maintainability index function, find a variation that has the
maximum maintainability index.

4.2 Complexity Analysis

To analyze the complexity of our separation problem, we first recast it as a decision
problem as follows:

Web Page Template and Data Separation for Better Maintainability 5

Definition 2. Maintainability based web page separation (decision version) Given a
DOM tree T and the maintainability index function, determine whether there exists a
variation whose maintainability index is less than or equal to a given constant c.

Then, we reduce the exact cover problem, which has been proved to be an NP-complete
problem [3], to our separation problem. As the solution of a general exact cover problem
does not have a weight (which is to be reduced to our maintainability index score c),
we define that all valid solutions of an exact cover problem have a constant weight c¢*,
while non-valid solutions have a negative infinity weight. The definition of an exact
cover problem is as follows:

Definition 3. EXACTCOVER Given a set X, a set S of subsets of X, and a cost function
F, determine whether there is a subcollection S* of S such that the intersection of any
two distinct subsets in S* is empty, the union of the subsets in S* is X, and F(S*) = c*.
Here, F(S+) is a function that returns a value of ¢ if S* is an exact cover of X, and —oo
otherwise.

Theorem 1. The decision version of the maintainability based web page separation
problem is NP-hard.

Proof. In the following, we construct an instance ms of the decision version of the
maintainability based web page separation and form a mapping from EXACTCOVER
to ms. Given any X of EXACTCOVER, we define the nodes of T of ms as the elements
of X. A subcollection of S consists of a number of subsets of S, denoted by S If we view
each subset of S as a subset of siblings of T in ms, then each subcollection corresponds
to a variation in ms. We map each subcollection S’ that covers all elements of X to its
corresponding variation and define the cost of the variation as the cost of all subsets in
S’. The cost of the variation corresponding to any other subsets of X than those in S is
defined as —oo. For any instance of EXACTCOVER, if there exists a subcollection of
S that covers all elements of X and has the cost of ¢*, then its corresponding variation
also has the cost of ¢*. Therefore, EXACTCOVER is reduced to the decision version
of the maintainability based web page separation problem, and the decision version of
the maintainability based web page separation problem is NP-hard.

5 Our Methods

5.1 Opverall Algorithm Procedure

Our algorithm traverses the DOM tree in a bottom-up manner to generate a layout tree
with the aim to maximize the maintainability index of every sub-layout tree. For every
node in the DOM tree, our algorithm uses a splitting algorithm (i.e., dual-TLBO, detailed
in Section 5.3) to split its child nodes (siblings) into chunks. For the chunks that contain
multiple siblings, our algorithm folds them together and uses an alignment algorithm
(detailed in Section 5.2) to capture the differences among the siblings. The splitting
algorithm adds iteration nodes, and the alignment algorithm adds condition nodes to the
layout tree generated. When the root node of the DOM tree is reached, the algorithm
terminates and returns the layout tree generated.

6 C. Zhao et al.

5.2 Alignment Algorithm

Our alignment algorithm aligns siblings in the same chunk and captures the differences
among the siblings. For every two siblings (which have been converted to layout trees
already since our algorithm works in a bottom-up manner) in the same chunk, our algo-
rithm aligns their children globally and recursively. Let the two layout trees be A and B.
The reference nodes, which refer to attributes, are aligned as the attributes of element
nodes. Besides, the reference nodes, which replace text nodes, are kept. Therefore, ref-
erence nodes which refer to attributes are not included in A or B. The score of aligning
A and B is the difference between the MI score of after and before aligning A and B. We
consider the following alignment operations: (1) Aligning a layout tree with null means
adding a condition as the root of the layout tree. If the root of the layout tree is already a
condition node, the layout tree does not change.We denote the layout trees of align A and
B with null by A, and B, respectively. (2)If at least one of A and B has an instruction
node as the root, the alignment begins from their child, which is not an instruction node
and the instruction node is kept as the root of the layout tree after aligning. (3) If the
roots of A and B are element nodes, and their attribute names and tag string are the
same, then they become one element node and their children are aligned recursively. (4)
If A and B are reference nodes, which refer to text nodes, they become one reference node.

Let the number of children of A and B be m and n and the ith child of A and the jth child
of B be A[i] and B[j]. The algorithm fills a matrix ALIGN of size (m + 1) X (n + 1).
ALIGNIi, j] is the maximum value of (1)ALIGNJi — 1,j — 1] + score(A[i], B[j]), (2)
ALIGNTIi — 1, j] + score(Ali]) and (3) ALIGN(i, j — 1] + score(B[j]). The alignment
algorithm fills ALIGN from ALIGN[0,0] to ALIGN[m + 1,n + 1] row by row. When
the filling is done, ALIGN[m + 1, n + 1] stores the maximum score of an alignment. We
trace back from ALIGN[m + 1,n + 1] to ALIGN]|O0, 0] to obtain the alignment. Let T,
be the root of the new layout tree. During tracing back, we add children to 7, to gener-
ate an aligned layout tree. If ALIGNJi, j] = ALIGN[i — 1, j + 1] + score(Alil], B[j]),
Ali] and B[j] are matched, we align them and add the generated layout tree to T,. If
ALIGNIi, j] = Ali -1, j]+score(A[i]), we add a condition node as the parent of A[i] to
generate A.[i] and add A.[i] to T.. If ALIGN(i, j] = A[i,j — 1] + score(B[j]), we add
a condition node as the parent of B[], which is B.[j], and add B[] to T,.. Besides, the
data records are also aligned to adapt to the changes of the layout tree. The alignment
algorithm returns 7.

Table 2. Score Table 3. Alignment
Ay By | Dy |Fy A | By | Dy P
0]-2|-5/-3|-4 0 | —-2[—-7]—-10] —-14
Ey|-4]-7]-3]2 |1 E | 14 —T-6[N-5[N-5] N9
Al-1] 6 [-1]-3]-5 A 1-5 N2 -3[—T-6[~T-10
Ci]-6/-2|-1|-1|3 Ci|1-11] 74 [N < 2] <6
Di|-4[-1]-1]5]2 Di|T-15] 1-8 [1-3[N6]| 2
F|-5]-5]-2]-4]6 Fi[1-20[1-13][7-8] 11 [N12

To help understand our alignment algorithm, we give a running example. In Tables 2 and
3, where [A}, By, Dy, F1] and [A, Cy, D3, E», F>] are two lists of siblings. Table 2 shows

Web Page Template and Data Separation for Better Maintainability 7

the score of matching every branch with others from the other list. We fill the Table 3
from left to right in a top-down manner. Finally, we trace back from the last element of
Table 3 which is (F3, F1). The cells in orange show the matching path. The alignment re-
sultis (E)), (A1, Az), (Cy, Ba), (D1, Dy), (Fy, F») and it increases the maintainability index
by 12. Our alignment adds a condition node as the parent of E,. Although score(Cy, By)
is smaller than 0, aligning C; and B, with null gets a lower score than score(Ci, By).

5.3 Dual Teaching and Learning Based Optimization Algorithm

We model the problem of splitting siblings into chunks as a problem of finding bound-
aries to separate the siblings. We represent the boundary of N siblings with a list of 0
or 1 whose length is N — 1, where 1 stands for a boundary (i.e., in different chunks),
while O stands for none boundary (i.e., in the same chunk). We design a population-

| Randomly generate pop_size individuals |

|><new = Xold + r * (Worst_Solution - Mean)| | Xnew = Xold + r * (Best_Solution - Mean) |

Replace Xold with worser solution Replace Xold with better solution between
between Xnew and Xold Xnew and Xold

1 o
Xnew = Xold + r * (Xj - Xi), Xi and Xj is
randomly selected and Xj > Xi

Replace Xold with worser solution | | Replace Xold with better solution between |
between Xnew and Xold Xnew and Xold

| Compare Xbest and Xworst, mutate the element with the same value |

i

S fermination criterion satisfied? _

Yes

v
Return the best solution

Fig. 2. Workflow of dual-TLBO

Xnew = Xold + r * (Xj - Xi), Xi and Xj is
randomly selected and Xj < Xi

based splitting algorithm which is named dual teaching and learning based optimization
(dual-TLBO). Figure 2 shows the key steps of our dual-TLBO. First, the algorithm ini-
tializes the population and a termination criterion. The termination criterion is the
maximum number of loops. Each individual in the population is a list of 0’s and 1’s,
which represents a solution B of the “Finding Chunk Boundaries” problem. It is ini-
tialized randomly. The mean of all individuals in the population is computed. Then a
teacher phase starts. In this phase, we get a new for every individual X,;4, we create
a new individual X,,., based on the teacher and the mean value, which is denoted by
Xnew = Xo1a +r(Teacher — Mean), where r is a system parameter between 0 and 1 that
represents the learning rate. The computed individual X,,.,, may contain non-integer
numbers or negative numbers. We round the number to its nearest non-negative integer.
If X,..\ represents a chunking that yields a higher MI score, we replace X,;q by Xpew.
Otherwise, X,;4 is kept and X, is discarded. Then, it comes to the student phase. We

8 C. Zhao et al.

randomly select two individuals X; and X; and for every individual X,;4, we create a
new individual X,..,, = X4 + r(X; — X;). Similar to the teacher phase, we compare
Xo14 With X;,.,, and keep the one producing a higher MI score. We add it a dual step to
the algorithm, where we run another teacher phase and another student phase but learn
from the worst (rather than the best) individual of the original population. After learning
from the worst and the best individuals, we can compare the new best individual and
the new worst individual element-wise. If the element in the same position is the same,
we consider it as a not well-learned element because the contribution to improving
maintainability index of the element is not clear. For these positions, we mutate their
values and keep the new best solution for the next iteration. If the termination criterion
is met, the algorithm returns the best solution, otherwise found so far.

n Learn from the best solution
ol fofr]
i n Learn from the worst solution

Fig. 3. Running Example of dual-TLBO

To help understand the dual-TLBO algorithm, we give a running example next. We
assume 5 siblings. The workflow is shown in Figure 3. First, we randomly generate three
individuals: [0, 1, 1,1],[1,0, 1, 1] and [0, 1, 0, 1]. We assume that [0, 1, 0, 1] is the current
best individual. The mean of the population is [1/3,2/3, 2/3, 1] and every individual
can generate three new individuals which are [2/3, 1/3,1/3,1],[-1/3,4/3,-2/3, 1] and
[-1/3,4/3,1/3, 1]. After rounding to the nearest non-negative integers, these three new
individuals become [1, 0,0, 1], [0, 1,0, 1] and [0, 1, 0, 1]. In this step, we only replace the
old individuals that are worse than the new individuals. After learning from the teacher,
the population becomes [1,0,0,1],[0,1,0, 1] and [0, 1,0, 1]. Then, we randomly select
two students from the population and the students are [1,0, 0, 1], [0, 1, 0, 1]. Every student
learns from these two students, and the population becomes three [1,0, 0, 1]. Then, we
use the original population: [0, 1,1,1], [1,0, 1, 1] and [0, 1,0, 1] to learn from the worst
individual. In this step, we aim to minimize the maintainability index of individuals.
We assume that [1, 0, 1, 1] is the current worst individual. After learning from them, the
bad population becomes three [1, 0, 1, 1]. Compare the best individual [0, 1,0, 1] and the
worst individual [1, 0, 1, 1], we find that the last element in these two individuals is the
same. This is a non-well learned element. We mutate it and update the best individual
to be [0, 1,0, 0].

6 Experiments

We evaluate the empirical performance of our algorithms on real datasets and report
the results in this section. We show that our algorithms can produce separations with
high MI scores than those by the baseline algorithms. Meanwhile, our algorithms also
produce separations with small sizes, which are comparable to those produced by the

Web Page Template and Data Separation for Better Maintainability 9

SYNTHIA algorithm that is designed to produce separations with small sizes.

We use two real data sets. The first dataset is from the SYNTHIA paper [7]. We de-
note the dataset by SYNTHIA-DATA. SYNTHIA-DATA contains 200 web pages from
40 websites (5 web pages per website). We use it to compare the performance of our
algorithms with the SYNTHIA algorithm. As the code of SYNTHIA is not available,
we do our best to implement the algorithm following the SYNTHIA paper [7] for our
experiments. The result is shown in Table 4.

Table 4. SYNTHIA-DATA

I \ MI CR time(s)]|
Original page | -3.46 (0%) 100% -
SYNTHIA | -3.06 (+0.7%) 63.34%"' 310

MAX-MI-LCS | 6.97 (+19.8%) 66.31% 315
MI-Dual-TLBO|9.38 (+ 24.4%) 67.27% 5943

In the table, MI denotes the maintainability index score. CR denotes the compression
ratio, i.e., the output file size over the original file size, and time denotes the algorithm
response time. We also report CR because SYNTHIA is designed to achieve a small CR
value. We report the performance of five algorithms, SYNTHIA is our implementation
of the SYNTHIA algorithm [7]; MAX-MI-LCS adds the alignment algorithm described
in Section 5.2; MI-Dual-TLBO is our proposed algorithm as described in Section 5.3.

We can see from the table that the proposed algorithm MI-Dual-TLBO outperforms
all the baseline algorithms in terms of the MI score, while its compression ratio is very
close to that of SYNTHIA which is designed to optimize the compression ratio. We no-
tice that MI-Dual-TLBO is slower than SYNTHIA. We argue that web page separation
is usually an offline task which can allow a slower algorithm. Further, if the algorithm
response time is critical, then our adapted algorithm MAX-MI and MAX-MI-LCS can
be used instead of SYNTHIA as they are as fast as SYNTHIA while obtaining larger MI
scores.
Table 5. TBDW

method dataset MI CR |time(s)
Original page |TBDW 17.80 (0%) 100% -
SYNTHIA |TBDW|(23.02 (+13.45%)|74.21%| 379
MI-Dual-TLBO|TBDW|| 27.50 (+25.0%) |75.13%| 2944
Table 6. UW-CAN

method dataset MI CR |[time(s)
Original page |UW-CAN|| 41.69 (0%) 100% -
SYNTHIA |UW-CAN]|| 45.04 (+6.1%) |81.16%| 127
MI-Dual-TLBO |UW-CAN|(48.30 (+12.1%)|83.92%| 1610

We also test our algorithm on other datasets. The result is shown in Table 5 and 6. TBDW
[10] is a data set that contains 253 web pages from 51 websites. UW-CAN [2] is a data
set that contains 314 web pages from the University of Waterloo and other Canadian

I The compression ratio reported in the original SYNTHIA paper is 62.8%.

10 C. Zhao et al.

websites. The result is shown in Table 6. Our proposed algorithm again outperforms
SYNTHIA in terms of the MI score, and the advantage is 25.0% and 12.1% on these
two datasets, respectively.

7 Conclusions

We proposed and studied a web page separation problem that aims to extract easily
maintainable template code and data records from web pages. We showed the NP-
hardness of the problem and presented a heuristic algorithm to solve the problem. We
proposed a dual-teaching and learning based optimization algorithm to detect siblings
generated by the same template. The experimental results show that our algorithms
outperform state-of-the-art web page separation techniques. Our algorithms extracts
easily maintainable template code from web pages, Web developers can compare their
web page source code with the template code generated by our algorithms and identify
ways to improve the maintainability of their source code. In the future, we plan to work
on extracting template code on the website level and data record extraction.

8 Acknowledgment

This work is supported by Australian Research Council (ARC) Future Fellowships
Project FT120100832 and Discovery Project DP180102050.

References

1. Counsell, S., Liu, X., Eldh, S., Tonelli, R., Marchesi, M., Concas, G., Murgia, A.: Re-visiting
the’maintainability index’metric from an object-oriented perspective. In: SEAA. pp. 84-87
(2015)

2. Hammouda, K.M., Kamel, M.S.: Phrase-based document similarity based on an index graph
model. In: ICDM. pp. 203-210 (2002)

3. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer com-
putations, pp. 85-103. Springer (1972)

4. Kayed, M., Chang, C.H.: Fivatech: Page-level web data extraction from template pages. IEEE
Transactions on Knowledge and Data Engineering 22(2), 249-263 (2010)

5. Liu, B., Grossman, R., Zhai, Y.: Mining data records in web pages. In: KDD. pp. 601-606
(2003)

6. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering (4), 308—
320 (1976)

7. Omari, A., Kimelfeld, B., Yahav, E., Shoham, S.: Lossless separation of web pages into layout
code and data. In: KDD. pp. 1805-1814 (2016)

8. Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs. Information
Sciences 180(19), 3647-3652 (2010)

9. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching—learning-based optimization: a novel method
for constrained mechanical design optimization problems. Computer-Aided Design 43(3),
303-315 (2011)

10. Yamada, Y., Craswell, N., Nakatoh, T., Hirokawa, S.: Testbed for information extraction from
deep web. In: WWW. pp. 346-347 (2004)

11. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW. pp. 76-85
(2005)

